Loading…

Exploring dynamic solvation kinetics at electrocatalyst surfaces

The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolut...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-09, Vol.15 (1), p.8204-11, Article 8204
Main Authors: Sarabia, Francisco, Gomez Rodellar, Carlos, Roldan Cuenya, Beatriz, Oener, Sebastian Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-75fd50474b1c479de44f44e271c6306df109a8429dc17a1e1e8b1021aaa692483
container_end_page 11
container_issue 1
container_start_page 8204
container_title Nature communications
container_volume 15
creator Sarabia, Francisco
Gomez Rodellar, Carlos
Roldan Cuenya, Beatriz
Oener, Sebastian Z.
description The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolution, ammonia oxidation and oxygen reduction reactions on polycrystalline Pt with distinct intrinsic rates and intermediates (e.g. *H, *OH, *NH 2 , *N). Despite these differences, we discover shared relationships between the pre-exponential factor and the activation energy that we link to solvation kinetics in the presence of electronic excess charge and charged intermediates. Further, we study dynamic changes of these kinetic parameters with a millisecond time resolution during electrosorption and double layer charging and dynamic *N and *NO poisoning. Finally, we discover a pH-dependent activation entropy that explains non-Nernstian overpotential shifts with pH. In sum, our results demonstrate the importance of accounting for a bias and time-dependent interfacial solvent and catalyst surface. Interfacial ion solvation is omnipresent in electrochemistry. Sarabia et al. now explore solvation kinetics with a millisecond time resolution and shine light on the critical role of the solvent during dynamic catalyst and electrosorption kinetics.
doi_str_mv 10.1038/s41467-024-52499-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c3731be6dd14db688f1267886dac3f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c3731be6dd14db688f1267886dac3f3</doaj_id><sourcerecordid>3106736311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-75fd50474b1c479de44f44e271c6306df109a8429dc17a1e1e8b1021aaa692483</originalsourceid><addsrcrecordid>eNp9kUFvFCEUxydGY5vaL-DBTOLFyygP3sJwUtNUbdLEi57JG2DWWdlhhZmm--1ld2ptPcgFAr_348G_ql4CewtMtO8yAkrVMI7NiqPWjX5SnXKG0IDi4umD9Ul1nvOGlSE0tIjPqxOhuS717LT6cHm7CzEN47p2-5G2g61zDDc0DXGsfw6jnwaba5pqH7ydUrQ0Udjnqc5z6sn6_KJ61lPI_vxuPqu-f7r8dvGluf76-eri43VjkfOpUaverRgq7MCi0s4j9oieK7BSMOl6YJpa5NpZUAQefNsB40BEUnNsxVl1tXhdpI3ZpWFLaW8iDea4EdPaUCrNBm_ACiWg89I5QNfJtu2BS9W20pEVvSiu94trN3db76wfp0ThkfTxyTj8MOt4YwAQSqOqGN7cGVL8Nfs8me2QrQ-BRh_nbAQwqYQUAAV9_Q-6iXMay18dqZUQkulC8YWyKeacfH_fDTBzCNwsgZsSuDkGbg5Frx6-477kT7wFEAuQd4eIffp793-0vwG8v7WV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106533609</pqid></control><display><type>article</type><title>Exploring dynamic solvation kinetics at electrocatalyst surfaces</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sarabia, Francisco ; Gomez Rodellar, Carlos ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creator><creatorcontrib>Sarabia, Francisco ; Gomez Rodellar, Carlos ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</creatorcontrib><description>The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolution, ammonia oxidation and oxygen reduction reactions on polycrystalline Pt with distinct intrinsic rates and intermediates (e.g. *H, *OH, *NH 2 , *N). Despite these differences, we discover shared relationships between the pre-exponential factor and the activation energy that we link to solvation kinetics in the presence of electronic excess charge and charged intermediates. Further, we study dynamic changes of these kinetic parameters with a millisecond time resolution during electrosorption and double layer charging and dynamic *N and *NO poisoning. Finally, we discover a pH-dependent activation entropy that explains non-Nernstian overpotential shifts with pH. In sum, our results demonstrate the importance of accounting for a bias and time-dependent interfacial solvent and catalyst surface. Interfacial ion solvation is omnipresent in electrochemistry. Sarabia et al. now explore solvation kinetics with a millisecond time resolution and shine light on the critical role of the solvent during dynamic catalyst and electrosorption kinetics.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52499-9</identifier><identifier>PMID: 39294140</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161 ; 639/638/440/951 ; 639/638/77/886 ; Activation energy ; Ammonia ; Bias ; Catalysts ; Chemical reduction ; Electrocatalysts ; Electrochemistry ; Energy charge ; Entropy of activation ; Humanities and Social Sciences ; Hydrogen evolution ; Intermediates ; Kinetics ; multidisciplinary ; Oxidation ; Oxygen reduction reactions ; pH effects ; Poisoning (reaction inhibition) ; Reaction kinetics ; Science ; Science (multidisciplinary) ; Solvation ; Solvents ; Time dependence</subject><ispartof>Nature communications, 2024-09, Vol.15 (1), p.8204-11, Article 8204</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-75fd50474b1c479de44f44e271c6306df109a8429dc17a1e1e8b1021aaa692483</cites><orcidid>0000-0003-3612-4059 ; 0009-0006-6482-1053 ; 0000-0002-8025-307X ; 0000-0003-0770-4089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3106533609/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3106533609?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39294140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Gomez Rodellar, Carlos</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><title>Exploring dynamic solvation kinetics at electrocatalyst surfaces</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolution, ammonia oxidation and oxygen reduction reactions on polycrystalline Pt with distinct intrinsic rates and intermediates (e.g. *H, *OH, *NH 2 , *N). Despite these differences, we discover shared relationships between the pre-exponential factor and the activation energy that we link to solvation kinetics in the presence of electronic excess charge and charged intermediates. Further, we study dynamic changes of these kinetic parameters with a millisecond time resolution during electrosorption and double layer charging and dynamic *N and *NO poisoning. Finally, we discover a pH-dependent activation entropy that explains non-Nernstian overpotential shifts with pH. In sum, our results demonstrate the importance of accounting for a bias and time-dependent interfacial solvent and catalyst surface. Interfacial ion solvation is omnipresent in electrochemistry. Sarabia et al. now explore solvation kinetics with a millisecond time resolution and shine light on the critical role of the solvent during dynamic catalyst and electrosorption kinetics.</description><subject>639/638/161</subject><subject>639/638/440/951</subject><subject>639/638/77/886</subject><subject>Activation energy</subject><subject>Ammonia</subject><subject>Bias</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy charge</subject><subject>Entropy of activation</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen evolution</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Oxygen reduction reactions</subject><subject>pH effects</subject><subject>Poisoning (reaction inhibition)</subject><subject>Reaction kinetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Time dependence</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFvFCEUxydGY5vaL-DBTOLFyygP3sJwUtNUbdLEi57JG2DWWdlhhZmm--1ld2ptPcgFAr_348G_ql4CewtMtO8yAkrVMI7NiqPWjX5SnXKG0IDi4umD9Ul1nvOGlSE0tIjPqxOhuS717LT6cHm7CzEN47p2-5G2g61zDDc0DXGsfw6jnwaba5pqH7ydUrQ0Udjnqc5z6sn6_KJ61lPI_vxuPqu-f7r8dvGluf76-eri43VjkfOpUaverRgq7MCi0s4j9oieK7BSMOl6YJpa5NpZUAQefNsB40BEUnNsxVl1tXhdpI3ZpWFLaW8iDea4EdPaUCrNBm_ACiWg89I5QNfJtu2BS9W20pEVvSiu94trN3db76wfp0ThkfTxyTj8MOt4YwAQSqOqGN7cGVL8Nfs8me2QrQ-BRh_nbAQwqYQUAAV9_Q-6iXMay18dqZUQkulC8YWyKeacfH_fDTBzCNwsgZsSuDkGbg5Frx6-477kT7wFEAuQd4eIffp793-0vwG8v7WV</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Sarabia, Francisco</creator><creator>Gomez Rodellar, Carlos</creator><creator>Roldan Cuenya, Beatriz</creator><creator>Oener, Sebastian Z.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid></search><sort><creationdate>20240918</creationdate><title>Exploring dynamic solvation kinetics at electrocatalyst surfaces</title><author>Sarabia, Francisco ; Gomez Rodellar, Carlos ; Roldan Cuenya, Beatriz ; Oener, Sebastian Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-75fd50474b1c479de44f44e271c6306df109a8429dc17a1e1e8b1021aaa692483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/638/161</topic><topic>639/638/440/951</topic><topic>639/638/77/886</topic><topic>Activation energy</topic><topic>Ammonia</topic><topic>Bias</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy charge</topic><topic>Entropy of activation</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen evolution</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Oxygen reduction reactions</topic><topic>pH effects</topic><topic>Poisoning (reaction inhibition)</topic><topic>Reaction kinetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarabia, Francisco</creatorcontrib><creatorcontrib>Gomez Rodellar, Carlos</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><creatorcontrib>Oener, Sebastian Z.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarabia, Francisco</au><au>Gomez Rodellar, Carlos</au><au>Roldan Cuenya, Beatriz</au><au>Oener, Sebastian Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring dynamic solvation kinetics at electrocatalyst surfaces</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>8204</spage><epage>11</epage><pages>8204-11</pages><artnum>8204</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The interface between electrocatalyst and electrolyte is highly dynamic. Even in absence of major structural changes, the intermediate coverage and interfacial solvent are bias and time dependent. This is not accounted for in current kinetic models. Here, we study the kinetics of the hydrogen evolution, ammonia oxidation and oxygen reduction reactions on polycrystalline Pt with distinct intrinsic rates and intermediates (e.g. *H, *OH, *NH 2 , *N). Despite these differences, we discover shared relationships between the pre-exponential factor and the activation energy that we link to solvation kinetics in the presence of electronic excess charge and charged intermediates. Further, we study dynamic changes of these kinetic parameters with a millisecond time resolution during electrosorption and double layer charging and dynamic *N and *NO poisoning. Finally, we discover a pH-dependent activation entropy that explains non-Nernstian overpotential shifts with pH. In sum, our results demonstrate the importance of accounting for a bias and time-dependent interfacial solvent and catalyst surface. Interfacial ion solvation is omnipresent in electrochemistry. Sarabia et al. now explore solvation kinetics with a millisecond time resolution and shine light on the critical role of the solvent during dynamic catalyst and electrosorption kinetics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39294140</pmid><doi>10.1038/s41467-024-52499-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3612-4059</orcidid><orcidid>https://orcid.org/0009-0006-6482-1053</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0003-0770-4089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-09, Vol.15 (1), p.8204-11, Article 8204
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1c3731be6dd14db688f1267886dac3f3
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/638/161
639/638/440/951
639/638/77/886
Activation energy
Ammonia
Bias
Catalysts
Chemical reduction
Electrocatalysts
Electrochemistry
Energy charge
Entropy of activation
Humanities and Social Sciences
Hydrogen evolution
Intermediates
Kinetics
multidisciplinary
Oxidation
Oxygen reduction reactions
pH effects
Poisoning (reaction inhibition)
Reaction kinetics
Science
Science (multidisciplinary)
Solvation
Solvents
Time dependence
title Exploring dynamic solvation kinetics at electrocatalyst surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20dynamic%20solvation%20kinetics%20at%20electrocatalyst%20surfaces&rft.jtitle=Nature%20communications&rft.au=Sarabia,%20Francisco&rft.date=2024-09-18&rft.volume=15&rft.issue=1&rft.spage=8204&rft.epage=11&rft.pages=8204-11&rft.artnum=8204&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52499-9&rft_dat=%3Cproquest_doaj_%3E3106736311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-75fd50474b1c479de44f44e271c6306df109a8429dc17a1e1e8b1021aaa692483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106533609&rft_id=info:pmid/39294140&rfr_iscdi=true