Loading…
Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device
We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelect...
Saved in:
Published in: | Micromachines (Basel) 2022-04, Vol.13 (5), p.707 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 707 |
container_title | Micromachines (Basel) |
container_volume | 13 |
creator | Zhao, Ying Wang, Jiawei |
description | We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system. |
doi_str_mv | 10.3390/mi13050707 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a</doaj_id><sourcerecordid>2671282107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgex2LLtjT9AAt6IsJqPmWRzI2hb20KlYKt4F_JxMs06k6zJTEH886Zura2B5CTnPHk5JG_TPCf4DWMSvx0DYbjDAosnzR7Fgi4559-ePtjvNgelrHEdQsi6PGt2WccZJoLtNb--6hy0GQB91rEHdJo2mxB79Ck5GNAHXcChFNGJnksJOqKjUFJ2kGv6Ivc6BosuYQw2RTfbKWXk67wEMGC_o2PvwU4oRHR1DXlMMNRjrleO4CZY2G92vB4KHNzFRfPl4_HV4eny_OLk7PD9-dK2mE5LbVhrrWRAOwwSnKdk5STVUhqz8kzjzmOJBQdTC8LgzmjoVq0lUratZIYtmrOtrkt6rTY5jDr_VEkH9SeRcq90noIdQBHLbMssOMF4Kz2RrXRcdIJ77TvJddV6t9XazGYEZyFOWQ-PRB9XYrhWfbpRkrRcSlwFXt0J5PRjhjKpMRQLw6AjpLkoygWhK0qwqOjL_9B1mnOsT3VLYcYor_-4aF5vKZtTKRn8fTMEq1uLqH8WqfCLh-3fo38NwX4DYi23Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670332656</pqid></control><display><type>article</type><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Ying ; Wang, Jiawei</creator><creatorcontrib>Zhao, Ying ; Wang, Jiawei</creatorcontrib><description>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13050707</identifier><identifier>PMID: 35630173</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carrier density ; Charge transport ; Conducting polymers ; Conductivity ; Energy ; Field effect transistors ; Heat conductivity ; Optimization ; Organic semiconductors ; Polymer films ; Seebeck coefficient ; Seebeck effect ; Semiconductor devices ; Semiconductors ; Temperature dependence ; thermoelectric device ; Thermoelectricity ; variable range hopping</subject><ispartof>Micromachines (Basel), 2022-04, Vol.13 (5), p.707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</citedby><cites>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670332656/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670332656?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35630173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</description><subject>Carrier density</subject><subject>Charge transport</subject><subject>Conducting polymers</subject><subject>Conductivity</subject><subject>Energy</subject><subject>Field effect transistors</subject><subject>Heat conductivity</subject><subject>Optimization</subject><subject>Organic semiconductors</subject><subject>Polymer films</subject><subject>Seebeck coefficient</subject><subject>Seebeck effect</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Temperature dependence</subject><subject>thermoelectric device</subject><subject>Thermoelectricity</subject><subject>variable range hopping</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgex2LLtjT9AAt6IsJqPmWRzI2hb20KlYKt4F_JxMs06k6zJTEH886Zura2B5CTnPHk5JG_TPCf4DWMSvx0DYbjDAosnzR7Fgi4559-ePtjvNgelrHEdQsi6PGt2WccZJoLtNb--6hy0GQB91rEHdJo2mxB79Ck5GNAHXcChFNGJnksJOqKjUFJ2kGv6Ivc6BosuYQw2RTfbKWXk67wEMGC_o2PvwU4oRHR1DXlMMNRjrleO4CZY2G92vB4KHNzFRfPl4_HV4eny_OLk7PD9-dK2mE5LbVhrrWRAOwwSnKdk5STVUhqz8kzjzmOJBQdTC8LgzmjoVq0lUratZIYtmrOtrkt6rTY5jDr_VEkH9SeRcq90noIdQBHLbMssOMF4Kz2RrXRcdIJ77TvJddV6t9XazGYEZyFOWQ-PRB9XYrhWfbpRkrRcSlwFXt0J5PRjhjKpMRQLw6AjpLkoygWhK0qwqOjL_9B1mnOsT3VLYcYor_-4aF5vKZtTKRn8fTMEq1uLqH8WqfCLh-3fo38NwX4DYi23Ag</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Zhao, Ying</creator><creator>Wang, Jiawei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220429</creationdate><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><author>Zhao, Ying ; Wang, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier density</topic><topic>Charge transport</topic><topic>Conducting polymers</topic><topic>Conductivity</topic><topic>Energy</topic><topic>Field effect transistors</topic><topic>Heat conductivity</topic><topic>Optimization</topic><topic>Organic semiconductors</topic><topic>Polymer films</topic><topic>Seebeck coefficient</topic><topic>Seebeck effect</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Temperature dependence</topic><topic>thermoelectric device</topic><topic>Thermoelectricity</topic><topic>variable range hopping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying</au><au>Wang, Jiawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><spage>707</spage><pages>707-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35630173</pmid><doi>10.3390/mi13050707</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2022-04, Vol.13 (5), p.707 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Carrier density Charge transport Conducting polymers Conductivity Energy Field effect transistors Heat conductivity Optimization Organic semiconductors Polymer films Seebeck coefficient Seebeck effect Semiconductor devices Semiconductors Temperature dependence thermoelectric device Thermoelectricity variable range hopping |
title | Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Range%20Hopping%20Model%20Based%20on%20Gaussian%20Disordered%20Organic%20Semiconductor%20for%20Seebeck%20Effect%20in%20Thermoelectric%20Device&rft.jtitle=Micromachines%20(Basel)&rft.au=Zhao,%20Ying&rft.date=2022-04-29&rft.volume=13&rft.issue=5&rft.spage=707&rft.pages=707-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13050707&rft_dat=%3Cproquest_doaj_%3E2671282107%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670332656&rft_id=info:pmid/35630173&rfr_iscdi=true |