Loading…

Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device

We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelect...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-04, Vol.13 (5), p.707
Main Authors: Zhao, Ying, Wang, Jiawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3
cites cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3
container_end_page
container_issue 5
container_start_page 707
container_title Micromachines (Basel)
container_volume 13
creator Zhao, Ying
Wang, Jiawei
description We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.
doi_str_mv 10.3390/mi13050707
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a</doaj_id><sourcerecordid>2671282107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgex2LLtjT9AAt6IsJqPmWRzI2hb20KlYKt4F_JxMs06k6zJTEH886Zura2B5CTnPHk5JG_TPCf4DWMSvx0DYbjDAosnzR7Fgi4559-ePtjvNgelrHEdQsi6PGt2WccZJoLtNb--6hy0GQB91rEHdJo2mxB79Ck5GNAHXcChFNGJnksJOqKjUFJ2kGv6Ivc6BosuYQw2RTfbKWXk67wEMGC_o2PvwU4oRHR1DXlMMNRjrleO4CZY2G92vB4KHNzFRfPl4_HV4eny_OLk7PD9-dK2mE5LbVhrrWRAOwwSnKdk5STVUhqz8kzjzmOJBQdTC8LgzmjoVq0lUratZIYtmrOtrkt6rTY5jDr_VEkH9SeRcq90noIdQBHLbMssOMF4Kz2RrXRcdIJ77TvJddV6t9XazGYEZyFOWQ-PRB9XYrhWfbpRkrRcSlwFXt0J5PRjhjKpMRQLw6AjpLkoygWhK0qwqOjL_9B1mnOsT3VLYcYor_-4aF5vKZtTKRn8fTMEq1uLqH8WqfCLh-3fo38NwX4DYi23Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670332656</pqid></control><display><type>article</type><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Ying ; Wang, Jiawei</creator><creatorcontrib>Zhao, Ying ; Wang, Jiawei</creatorcontrib><description>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13050707</identifier><identifier>PMID: 35630173</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carrier density ; Charge transport ; Conducting polymers ; Conductivity ; Energy ; Field effect transistors ; Heat conductivity ; Optimization ; Organic semiconductors ; Polymer films ; Seebeck coefficient ; Seebeck effect ; Semiconductor devices ; Semiconductors ; Temperature dependence ; thermoelectric device ; Thermoelectricity ; variable range hopping</subject><ispartof>Micromachines (Basel), 2022-04, Vol.13 (5), p.707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</citedby><cites>FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670332656/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670332656?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35630173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</description><subject>Carrier density</subject><subject>Charge transport</subject><subject>Conducting polymers</subject><subject>Conductivity</subject><subject>Energy</subject><subject>Field effect transistors</subject><subject>Heat conductivity</subject><subject>Optimization</subject><subject>Organic semiconductors</subject><subject>Polymer films</subject><subject>Seebeck coefficient</subject><subject>Seebeck effect</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Temperature dependence</subject><subject>thermoelectric device</subject><subject>Thermoelectricity</subject><subject>variable range hopping</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgex2LLtjT9AAt6IsJqPmWRzI2hb20KlYKt4F_JxMs06k6zJTEH886Zura2B5CTnPHk5JG_TPCf4DWMSvx0DYbjDAosnzR7Fgi4559-ePtjvNgelrHEdQsi6PGt2WccZJoLtNb--6hy0GQB91rEHdJo2mxB79Ck5GNAHXcChFNGJnksJOqKjUFJ2kGv6Ivc6BosuYQw2RTfbKWXk67wEMGC_o2PvwU4oRHR1DXlMMNRjrleO4CZY2G92vB4KHNzFRfPl4_HV4eny_OLk7PD9-dK2mE5LbVhrrWRAOwwSnKdk5STVUhqz8kzjzmOJBQdTC8LgzmjoVq0lUratZIYtmrOtrkt6rTY5jDr_VEkH9SeRcq90noIdQBHLbMssOMF4Kz2RrXRcdIJ77TvJddV6t9XazGYEZyFOWQ-PRB9XYrhWfbpRkrRcSlwFXt0J5PRjhjKpMRQLw6AjpLkoygWhK0qwqOjL_9B1mnOsT3VLYcYor_-4aF5vKZtTKRn8fTMEq1uLqH8WqfCLh-3fo38NwX4DYi23Ag</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Zhao, Ying</creator><creator>Wang, Jiawei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220429</creationdate><title>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</title><author>Zhao, Ying ; Wang, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier density</topic><topic>Charge transport</topic><topic>Conducting polymers</topic><topic>Conductivity</topic><topic>Energy</topic><topic>Field effect transistors</topic><topic>Heat conductivity</topic><topic>Optimization</topic><topic>Organic semiconductors</topic><topic>Polymer films</topic><topic>Seebeck coefficient</topic><topic>Seebeck effect</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Temperature dependence</topic><topic>thermoelectric device</topic><topic>Thermoelectricity</topic><topic>variable range hopping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying</au><au>Wang, Jiawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><spage>707</spage><pages>707-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>We investigate the carrier concentration dependent Seebeck coefficient in Gaussian disordered organic semiconductors (GD-OSs) for thermoelectric device applications. Based on the variable-range hopping (VRH) theory, a general model predicting the Seebeck effect is developed to reveal the thermoelectric properties in GD-OSs. The proposed model could interpret the experimental data on carrier concentration- and temperature-dependence of the Seebeck coefficient, including various kinds of conducting polymer film and small molecule based field-effect transistors (FETs). Compared with the conventional Mott's VRH and mobility edge model, our model has a much better description of the relationship between the Seebeck coefficient and conductivity. The model could deepen our insight into charge transport in organic semiconductors and provide instructions for the optimization of thermoelectric device performance in a disordered system.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35630173</pmid><doi>10.3390/mi13050707</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2022-04, Vol.13 (5), p.707
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1c3c43ced73649f1949d67576faf596a
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Carrier density
Charge transport
Conducting polymers
Conductivity
Energy
Field effect transistors
Heat conductivity
Optimization
Organic semiconductors
Polymer films
Seebeck coefficient
Seebeck effect
Semiconductor devices
Semiconductors
Temperature dependence
thermoelectric device
Thermoelectricity
variable range hopping
title Variable Range Hopping Model Based on Gaussian Disordered Organic Semiconductor for Seebeck Effect in Thermoelectric Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Range%20Hopping%20Model%20Based%20on%20Gaussian%20Disordered%20Organic%20Semiconductor%20for%20Seebeck%20Effect%20in%20Thermoelectric%20Device&rft.jtitle=Micromachines%20(Basel)&rft.au=Zhao,%20Ying&rft.date=2022-04-29&rft.volume=13&rft.issue=5&rft.spage=707&rft.pages=707-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13050707&rft_dat=%3Cproquest_doaj_%3E2671282107%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-ab34cc93e250e9edf218d92a99bb8f3a05f09076eb2187b05bae584c1994493b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670332656&rft_id=info:pmid/35630173&rfr_iscdi=true