Loading…
Adaptive Terminal Sliding Mode Trajectory Tracking Control for Autonomous Vehicles Considering Completely Unknown Parameters and Unknown Perturbation Conditions
In the actual implementation of autonomous vehicle controller and related applications, it is difficult to obtain all the actual parameters of the vehicle. Considering factors such as uneven pavement and different pavement conditions, it is difficult to accurately establish the vehicle dynamic syste...
Saved in:
Published in: | Machines (Basel) 2024-04, Vol.12 (4), p.237 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the actual implementation of autonomous vehicle controller and related applications, it is difficult to obtain all the actual parameters of the vehicle. Considering factors such as uneven pavement and different pavement conditions, it is difficult to accurately establish the vehicle dynamic system model. Based on the non-singular terminal sliding mode and adaptive control theory, this paper establishes a trajectory tracking control strategy for an autonomous vehicle with unknown parameters and unknown disturbances. Firstly, the complex trajectory tracking problem is decoupled from the position and heading angle tracking problem, and the preview error equation is established. Secondly, a non-singular terminal sliding mode (NTSM) controller is established to stabilize the trajectory tracking error to the origin in a finite time, and adaptive laws are proposed to estimate the unknown vehicle parameters to adapt to environmental changes. Through the CarSim–Matlab platform, typical working conditions are implemented to verify the proposed controller. Our experimental outcomes affirm that the NTSM controller effectively guarantees the autonomous vehicle’s accurate following of the reference path, ensuring smooth control inputs throughout the entire process. |
---|---|
ISSN: | 2075-1702 2075-1702 |
DOI: | 10.3390/machines12040237 |