Loading…
New approch of opinion analysis from big social data environment using a supervised machine learning algirithm
Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment a...
Saved in:
Published in: | E3S web of conferences 2021-01, Vol.319, p.1037 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053 |
container_end_page | |
container_issue | |
container_start_page | 1037 |
container_title | E3S web of conferences |
container_volume | 319 |
creator | Saidi, Wiam El Abderahmani, Abdellatif Satori, Khalid |
description | Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising. |
doi_str_mv | 10.1051/e3sconf/202131901037 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339</doaj_id><sourcerecordid>2819260981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</originalsourceid><addsrcrecordid>eNpNkUtLBDEQhAdRcFH_gYeA59U8J8lRFl8getFz6MljN8tMMiaziv_e0RXx1E1XUQ31Nc05wZcEC3LlWbU5hSuKKWFEY4KZPGgWlLZySSinh__24-as1i3GmFChOOaLJj35DwTjWLLdoBxQHmOKOSFI0H_WWFEoeUBdXKOabYQeOZgA-fQeS06DTxPa1ZjWCFDdjb68x-odGsBuYvKo91DSj9qvY4nTZjhtjgL01Z_9zpPm9fbmZXW_fHy-e1hdPy4tFUIuodNEKsG4sIG1nErluRfO0Y5rJVsumHKKwWxlwLnWjmupOEgWnLUaC3bSPOxzXYatGUscoHyaDNH8HHJZGyhTtL03xLZthz2VnabcMdkxEaSTog0cCGN6zrrYZ80lve18ncw278rcTzVUEU1brBWZXXzvsiXXWnz4-0qw-QZlfkGZ_6DYF8fyhw0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819260981</pqid></control><display><type>article</type><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><source>Publicly Available Content (ProQuest)</source><creator>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid</creator><contributor>Soulaymani, A. ; Mokhtari, A. ; Slimani, K. ; Hami, H. ; Bourekkadi, S.</contributor><creatorcontrib>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid ; Soulaymani, A. ; Mokhtari, A. ; Slimani, K. ; Hami, H. ; Bourekkadi, S.</creatorcontrib><description>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202131901037</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Annotations ; big social data ; classification ; Data mining ; extraction ; Learning algorithms ; Machine learning ; opinion mining ; Sentiment analysis ; Supervised learning ; svm</subject><ispartof>E3S web of conferences, 2021-01, Vol.319, p.1037</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2819260981?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Soulaymani, A.</contributor><contributor>Mokhtari, A.</contributor><contributor>Slimani, K.</contributor><contributor>Hami, H.</contributor><contributor>Bourekkadi, S.</contributor><creatorcontrib>Saidi, Wiam</creatorcontrib><creatorcontrib>El Abderahmani, Abdellatif</creatorcontrib><creatorcontrib>Satori, Khalid</creatorcontrib><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><title>E3S web of conferences</title><description>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</description><subject>Annotations</subject><subject>big social data</subject><subject>classification</subject><subject>Data mining</subject><subject>extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>opinion mining</subject><subject>Sentiment analysis</subject><subject>Supervised learning</subject><subject>svm</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLBDEQhAdRcFH_gYeA59U8J8lRFl8getFz6MljN8tMMiaziv_e0RXx1E1XUQ31Nc05wZcEC3LlWbU5hSuKKWFEY4KZPGgWlLZySSinh__24-as1i3GmFChOOaLJj35DwTjWLLdoBxQHmOKOSFI0H_WWFEoeUBdXKOabYQeOZgA-fQeS06DTxPa1ZjWCFDdjb68x-odGsBuYvKo91DSj9qvY4nTZjhtjgL01Z_9zpPm9fbmZXW_fHy-e1hdPy4tFUIuodNEKsG4sIG1nErluRfO0Y5rJVsumHKKwWxlwLnWjmupOEgWnLUaC3bSPOxzXYatGUscoHyaDNH8HHJZGyhTtL03xLZthz2VnabcMdkxEaSTog0cCGN6zrrYZ80lve18ncw278rcTzVUEU1brBWZXXzvsiXXWnz4-0qw-QZlfkGZ_6DYF8fyhw0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Saidi, Wiam</creator><creator>El Abderahmani, Abdellatif</creator><creator>Satori, Khalid</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><author>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>big social data</topic><topic>classification</topic><topic>Data mining</topic><topic>extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>opinion mining</topic><topic>Sentiment analysis</topic><topic>Supervised learning</topic><topic>svm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saidi, Wiam</creatorcontrib><creatorcontrib>El Abderahmani, Abdellatif</creatorcontrib><creatorcontrib>Satori, Khalid</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saidi, Wiam</au><au>El Abderahmani, Abdellatif</au><au>Satori, Khalid</au><au>Soulaymani, A.</au><au>Mokhtari, A.</au><au>Slimani, K.</au><au>Hami, H.</au><au>Bourekkadi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</atitle><jtitle>E3S web of conferences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>319</volume><spage>1037</spage><pages>1037-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202131901037</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S web of conferences, 2021-01, Vol.319, p.1037 |
issn | 2267-1242 2555-0403 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339 |
source | Publicly Available Content (ProQuest) |
subjects | Annotations big social data classification Data mining extraction Learning algorithms Machine learning opinion mining Sentiment analysis Supervised learning svm |
title | New approch of opinion analysis from big social data environment using a supervised machine learning algirithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approch%20of%20opinion%20analysis%20from%20big%20social%20data%20environment%20using%20a%20supervised%20machine%20learning%20algirithm&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Saidi,%20Wiam&rft.date=2021-01-01&rft.volume=319&rft.spage=1037&rft.pages=1037-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202131901037&rft_dat=%3Cproquest_doaj_%3E2819260981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819260981&rft_id=info:pmid/&rfr_iscdi=true |