Loading…

New approch of opinion analysis from big social data environment using a supervised machine learning algirithm

Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment a...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2021-01, Vol.319, p.1037
Main Authors: Saidi, Wiam, El Abderahmani, Abdellatif, Satori, Khalid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053
container_end_page
container_issue
container_start_page 1037
container_title E3S web of conferences
container_volume 319
creator Saidi, Wiam
El Abderahmani, Abdellatif
Satori, Khalid
description Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.
doi_str_mv 10.1051/e3sconf/202131901037
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339</doaj_id><sourcerecordid>2819260981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</originalsourceid><addsrcrecordid>eNpNkUtLBDEQhAdRcFH_gYeA59U8J8lRFl8getFz6MljN8tMMiaziv_e0RXx1E1XUQ31Nc05wZcEC3LlWbU5hSuKKWFEY4KZPGgWlLZySSinh__24-as1i3GmFChOOaLJj35DwTjWLLdoBxQHmOKOSFI0H_WWFEoeUBdXKOabYQeOZgA-fQeS06DTxPa1ZjWCFDdjb68x-odGsBuYvKo91DSj9qvY4nTZjhtjgL01Z_9zpPm9fbmZXW_fHy-e1hdPy4tFUIuodNEKsG4sIG1nErluRfO0Y5rJVsumHKKwWxlwLnWjmupOEgWnLUaC3bSPOxzXYatGUscoHyaDNH8HHJZGyhTtL03xLZthz2VnabcMdkxEaSTog0cCGN6zrrYZ80lve18ncw278rcTzVUEU1brBWZXXzvsiXXWnz4-0qw-QZlfkGZ_6DYF8fyhw0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819260981</pqid></control><display><type>article</type><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><source>Publicly Available Content (ProQuest)</source><creator>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid</creator><contributor>Soulaymani, A. ; Mokhtari, A. ; Slimani, K. ; Hami, H. ; Bourekkadi, S.</contributor><creatorcontrib>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid ; Soulaymani, A. ; Mokhtari, A. ; Slimani, K. ; Hami, H. ; Bourekkadi, S.</creatorcontrib><description>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202131901037</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Annotations ; big social data ; classification ; Data mining ; extraction ; Learning algorithms ; Machine learning ; opinion mining ; Sentiment analysis ; Supervised learning ; svm</subject><ispartof>E3S web of conferences, 2021-01, Vol.319, p.1037</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2819260981?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Soulaymani, A.</contributor><contributor>Mokhtari, A.</contributor><contributor>Slimani, K.</contributor><contributor>Hami, H.</contributor><contributor>Bourekkadi, S.</contributor><creatorcontrib>Saidi, Wiam</creatorcontrib><creatorcontrib>El Abderahmani, Abdellatif</creatorcontrib><creatorcontrib>Satori, Khalid</creatorcontrib><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><title>E3S web of conferences</title><description>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</description><subject>Annotations</subject><subject>big social data</subject><subject>classification</subject><subject>Data mining</subject><subject>extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>opinion mining</subject><subject>Sentiment analysis</subject><subject>Supervised learning</subject><subject>svm</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLBDEQhAdRcFH_gYeA59U8J8lRFl8getFz6MljN8tMMiaziv_e0RXx1E1XUQ31Nc05wZcEC3LlWbU5hSuKKWFEY4KZPGgWlLZySSinh__24-as1i3GmFChOOaLJj35DwTjWLLdoBxQHmOKOSFI0H_WWFEoeUBdXKOabYQeOZgA-fQeS06DTxPa1ZjWCFDdjb68x-odGsBuYvKo91DSj9qvY4nTZjhtjgL01Z_9zpPm9fbmZXW_fHy-e1hdPy4tFUIuodNEKsG4sIG1nErluRfO0Y5rJVsumHKKwWxlwLnWjmupOEgWnLUaC3bSPOxzXYatGUscoHyaDNH8HHJZGyhTtL03xLZthz2VnabcMdkxEaSTog0cCGN6zrrYZ80lve18ncw278rcTzVUEU1brBWZXXzvsiXXWnz4-0qw-QZlfkGZ_6DYF8fyhw0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Saidi, Wiam</creator><creator>El Abderahmani, Abdellatif</creator><creator>Satori, Khalid</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</title><author>Saidi, Wiam ; El Abderahmani, Abdellatif ; Satori, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>big social data</topic><topic>classification</topic><topic>Data mining</topic><topic>extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>opinion mining</topic><topic>Sentiment analysis</topic><topic>Supervised learning</topic><topic>svm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saidi, Wiam</creatorcontrib><creatorcontrib>El Abderahmani, Abdellatif</creatorcontrib><creatorcontrib>Satori, Khalid</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saidi, Wiam</au><au>El Abderahmani, Abdellatif</au><au>Satori, Khalid</au><au>Soulaymani, A.</au><au>Mokhtari, A.</au><au>Slimani, K.</au><au>Hami, H.</au><au>Bourekkadi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approch of opinion analysis from big social data environment using a supervised machine learning algirithm</atitle><jtitle>E3S web of conferences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>319</volume><spage>1037</spage><pages>1037-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Sentiment analysis is a very substantial area of research in our environment. Many studies have focused on the topic in recent years. It has rapidly gained interest due to the unusual volume of opinion-bearing data on the Internet (Big Social Data). In this paper, we focus on sentiment environment analysis from Amazon customer reviews shared by a machine learning based approach. This process starts with the collection of reviews and their annotation followed by a text pre-processing phase in order to extract words that are reduced to their root. These words will be used for the construction of input variables using several combinations of extraction and weighting schemes. Classification is then performed by a supervised Machine Learning classifier. The results obtained from the experiments are very promising.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202131901037</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2021-01, Vol.319, p.1037
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1c66b0e27b924d37b35f7d756f4a1339
source Publicly Available Content (ProQuest)
subjects Annotations
big social data
classification
Data mining
extraction
Learning algorithms
Machine learning
opinion mining
Sentiment analysis
Supervised learning
svm
title New approch of opinion analysis from big social data environment using a supervised machine learning algirithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approch%20of%20opinion%20analysis%20from%20big%20social%20data%20environment%20using%20a%20supervised%20machine%20learning%20algirithm&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Saidi,%20Wiam&rft.date=2021-01-01&rft.volume=319&rft.spage=1037&rft.pages=1037-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202131901037&rft_dat=%3Cproquest_doaj_%3E2819260981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2557-ab91785345cf364278e4e5dd2b498764538d83a5573a4499d49784a73fdcc9053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819260981&rft_id=info:pmid/&rfr_iscdi=true