Loading…

Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors

Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides....

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5903-5903, Article 5903
Main Authors: Ghosh, Chandranath, Ghosh, Souvik, Chatterjee, Ayan, Bera, Palash, Mampallil, Dileep, Ghosh, Pushpita, Das, Dibyendu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3
cites cdi_FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3
container_end_page 5903
container_issue 1
container_start_page 5903
container_title Nature communications
container_volume 14
creator Ghosh, Chandranath
Ghosh, Souvik
Chatterjee, Ayan
Bera, Palash
Mampallil, Dileep
Ghosh, Pushpita
Das, Dibyendu
description Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes. Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future. Here, the authors prepare short-peptide-based cross β amyloid nanomotors which can host dedicated enzymes with orthogonal substrates for motility and navigation.
doi_str_mv 10.1038/s41467-023-41301-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c6bcb0f6b28409aa33f6fe29065c714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c6bcb0f6b28409aa33f6fe29065c714</doaj_id><sourcerecordid>2868122086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxyMEolXpC3CKxIVLisd27PiEUPmqtBIXOFsTf2yzSuzFTqDLY_EgfSbcTQWUA77Y8vzmp9H8q-o5kAsgrHuVOXAhG0JZw4ERaG4eVaeUcGhAUvb4r_dJdZ7zjpTDFHScP61OmJRMUspOq83bBcfahR-HyTX7-N0lZ2tz7aY4o5kHU5sUc65vf9Y4HcY42LrHXBC_hFKOoTQHDLHgMeVn1ROPY3bn9_dZ9eX9u8-XH5vNpw9Xl282jWmhmxuLBKyi0KKXXIjWozcgejSSM6daorjtkTiJHHoveGs5WGqUN8pJoqxjZ9XV6rURd3qfhgnTQUcc9PEjpq3GVIYfnQYjetMTL3racaIQGfPCO6qIaI0EXlyvV9d-6SdnjQtzwvGB9GElDNd6G79pIC0IRe4ML-8NKX5dXJ71NGTjxhGDi0vWtBMdUEo6UdAX_6C7uKSyxCMlQTIlSaHoSh13n5z_PQ0QfRe-XsPXJXx9DF_flCa2NuUCh61Lf9T_6foFcMGygw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867173970</pqid></control><display><type>article</type><title>Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ghosh, Chandranath ; Ghosh, Souvik ; Chatterjee, Ayan ; Bera, Palash ; Mampallil, Dileep ; Ghosh, Pushpita ; Das, Dibyendu</creator><creatorcontrib>Ghosh, Chandranath ; Ghosh, Souvik ; Chatterjee, Ayan ; Bera, Palash ; Mampallil, Dileep ; Ghosh, Pushpita ; Das, Dibyendu</creatorcontrib><description>Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes. Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future. Here, the authors prepare short-peptide-based cross β amyloid nanomotors which can host dedicated enzymes with orthogonal substrates for motility and navigation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41301-x</identifier><identifier>PMID: 37737223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 147/28 ; 147/3 ; 639/301/923/966 ; 639/638/541/966 ; 639/638/77/603 ; Catalysis ; Cytochrome ; Cytochrome c ; Cytochromes ; Enzymes ; Humanities and Social Sciences ; Motility ; multidisciplinary ; Nanotechnology devices ; Navigation ; Peptides ; Precursors ; Pyrogallol ; Science ; Science (multidisciplinary) ; Substrates ; Urea ; Urease ; β-Amyloid</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5903-5903, Article 5903</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3</citedby><cites>FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3</cites><orcidid>0000-0001-6597-8454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2867173970/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2867173970?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Ghosh, Chandranath</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Chatterjee, Ayan</creatorcontrib><creatorcontrib>Bera, Palash</creatorcontrib><creatorcontrib>Mampallil, Dileep</creatorcontrib><creatorcontrib>Ghosh, Pushpita</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><title>Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes. Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future. Here, the authors prepare short-peptide-based cross β amyloid nanomotors which can host dedicated enzymes with orthogonal substrates for motility and navigation.</description><subject>119/118</subject><subject>147/28</subject><subject>147/3</subject><subject>639/301/923/966</subject><subject>639/638/541/966</subject><subject>639/638/77/603</subject><subject>Catalysis</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes</subject><subject>Enzymes</subject><subject>Humanities and Social Sciences</subject><subject>Motility</subject><subject>multidisciplinary</subject><subject>Nanotechnology devices</subject><subject>Navigation</subject><subject>Peptides</subject><subject>Precursors</subject><subject>Pyrogallol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Urea</subject><subject>Urease</subject><subject>β-Amyloid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAQxyMEolXpC3CKxIVLisd27PiEUPmqtBIXOFsTf2yzSuzFTqDLY_EgfSbcTQWUA77Y8vzmp9H8q-o5kAsgrHuVOXAhG0JZw4ERaG4eVaeUcGhAUvb4r_dJdZ7zjpTDFHScP61OmJRMUspOq83bBcfahR-HyTX7-N0lZ2tz7aY4o5kHU5sUc65vf9Y4HcY42LrHXBC_hFKOoTQHDLHgMeVn1ROPY3bn9_dZ9eX9u8-XH5vNpw9Xl282jWmhmxuLBKyi0KKXXIjWozcgejSSM6daorjtkTiJHHoveGs5WGqUN8pJoqxjZ9XV6rURd3qfhgnTQUcc9PEjpq3GVIYfnQYjetMTL3racaIQGfPCO6qIaI0EXlyvV9d-6SdnjQtzwvGB9GElDNd6G79pIC0IRe4ML-8NKX5dXJ71NGTjxhGDi0vWtBMdUEo6UdAX_6C7uKSyxCMlQTIlSaHoSh13n5z_PQ0QfRe-XsPXJXx9DF_flCa2NuUCh61Lf9T_6foFcMGygw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Ghosh, Chandranath</creator><creator>Ghosh, Souvik</creator><creator>Chatterjee, Ayan</creator><creator>Bera, Palash</creator><creator>Mampallil, Dileep</creator><creator>Ghosh, Pushpita</creator><creator>Das, Dibyendu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6597-8454</orcidid></search><sort><creationdate>20230922</creationdate><title>Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors</title><author>Ghosh, Chandranath ; Ghosh, Souvik ; Chatterjee, Ayan ; Bera, Palash ; Mampallil, Dileep ; Ghosh, Pushpita ; Das, Dibyendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>147/28</topic><topic>147/3</topic><topic>639/301/923/966</topic><topic>639/638/541/966</topic><topic>639/638/77/603</topic><topic>Catalysis</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes</topic><topic>Enzymes</topic><topic>Humanities and Social Sciences</topic><topic>Motility</topic><topic>multidisciplinary</topic><topic>Nanotechnology devices</topic><topic>Navigation</topic><topic>Peptides</topic><topic>Precursors</topic><topic>Pyrogallol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Urea</topic><topic>Urease</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Chandranath</creatorcontrib><creatorcontrib>Ghosh, Souvik</creatorcontrib><creatorcontrib>Chatterjee, Ayan</creatorcontrib><creatorcontrib>Bera, Palash</creatorcontrib><creatorcontrib>Mampallil, Dileep</creatorcontrib><creatorcontrib>Ghosh, Pushpita</creatorcontrib><creatorcontrib>Das, Dibyendu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Chandranath</au><au>Ghosh, Souvik</au><au>Chatterjee, Ayan</au><au>Bera, Palash</au><au>Mampallil, Dileep</au><au>Ghosh, Pushpita</au><au>Das, Dibyendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-22</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5903</spage><epage>5903</epage><pages>5903-5903</pages><artnum>5903</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes. Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future. Here, the authors prepare short-peptide-based cross β amyloid nanomotors which can host dedicated enzymes with orthogonal substrates for motility and navigation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37737223</pmid><doi>10.1038/s41467-023-41301-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6597-8454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5903-5903, Article 5903
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1c6bcb0f6b28409aa33f6fe29065c714
source Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
147/28
147/3
639/301/923/966
639/638/541/966
639/638/77/603
Catalysis
Cytochrome
Cytochrome c
Cytochromes
Enzymes
Humanities and Social Sciences
Motility
multidisciplinary
Nanotechnology devices
Navigation
Peptides
Precursors
Pyrogallol
Science
Science (multidisciplinary)
Substrates
Urea
Urease
β-Amyloid
title Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20enzyme-powered%20chemotactic%20cross%20%CE%B2%20amyloid%20based%20functional%20nanomotors&rft.jtitle=Nature%20communications&rft.au=Ghosh,%20Chandranath&rft.date=2023-09-22&rft.volume=14&rft.issue=1&rft.spage=5903&rft.epage=5903&rft.pages=5903-5903&rft.artnum=5903&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41301-x&rft_dat=%3Cproquest_doaj_%3E2868122086%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-da01d9215af74665fafc16bac743e95094dba0e7a41bf645d41d2c9fc9e709de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867173970&rft_id=info:pmid/37737223&rfr_iscdi=true