Loading…

Self-Assembled Bimetallic Aluminum-Salen Catalyst for the Cyclic Carbonates Synthesis

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The t...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-07, Vol.26 (13), p.4097
Main Authors: Seong, Wooyong, Hahm, Hyungwoo, Kim, Seyong, Park, Jongwoo, Abboud, Khalil A., Hong, Sukwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26134097