Loading…
BioNetStat: A Tool for Biological Networks Differential Analysis
The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g.,...
Saved in:
Published in: | Frontiers in genetics 2019-06, Vol.10, p.594-594 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083 |
container_end_page | 594 |
container_issue | |
container_start_page | 594 |
container_title | Frontiers in genetics |
container_volume | 10 |
creator | Jardim, Vinícius Carvalho Santos, Suzana de Siqueira Fujita, Andre Buckeridge, Marcos Silveira |
description | The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods. |
doi_str_mv | 10.3389/fgene.2019.00594 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07</doaj_id><sourcerecordid>2256104634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</originalsourceid><addsrcrecordid>eNpVUU1PGzEQtSpQQcC9p2qPvSQdf-6aA2qgX0gIDsDZ8jrj1NRZg70B8e_rJBSBL2O9mXnzZh4hnyhMOe_0V7_AAacMqJ4CSC0-kH2qlJh0wOjOm_8eOSrlDuoTmnMuPpI9TpnmitF98u00pEscr0c7Hjez5ial2PiUmwrHtAjOxqamn1L-W5rvwXvMOIyhorPBxucSyiHZ9TYWPHqJB-T254-bs9-Ti6tf52ezi4kTio2TFmjHrAKvBHWoWslpr2irreUtcqk7OfdOaysQpXa0LuWxY1IIqXovoOMH5HzLO0_2ztznsLT52SQbzAZIeWFsHoOLaKjrWucdWC6lqJexjCKA7nvoevDQVq6TLdf9ql_i3NWVso3vSN9nhvDHLNKjUVWo0GsxX14IcnpYYRnNMhSHMdoB06oYxqSiIBQXtRS2pS6nUjL61zEUzNpHs_HRrH00Gx9ry-e38l4b_rvG_wEoj5g_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256104634</pqid></control><display><type>article</type><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><source>Open Access: PubMed Central</source><creator>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</creator><creatorcontrib>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</creatorcontrib><description>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2019.00594</identifier><identifier>PMID: 31293621</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>coexpression network ; correlation network ; differential coexpression ; differential network analysis ; Genetics ; systems biology ; systems biology tool</subject><ispartof>Frontiers in genetics, 2019-06, Vol.10, p.594-594</ispartof><rights>Copyright © 2019 Jardim, Santos, Fujita and Buckeridge. 2019 Jardim, Santos, Fujita and Buckeridge</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</citedby><cites>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31293621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jardim, Vinícius Carvalho</creatorcontrib><creatorcontrib>Santos, Suzana de Siqueira</creatorcontrib><creatorcontrib>Fujita, Andre</creatorcontrib><creatorcontrib>Buckeridge, Marcos Silveira</creatorcontrib><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</description><subject>coexpression network</subject><subject>correlation network</subject><subject>differential coexpression</subject><subject>differential network analysis</subject><subject>Genetics</subject><subject>systems biology</subject><subject>systems biology tool</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1PGzEQtSpQQcC9p2qPvSQdf-6aA2qgX0gIDsDZ8jrj1NRZg70B8e_rJBSBL2O9mXnzZh4hnyhMOe_0V7_AAacMqJ4CSC0-kH2qlJh0wOjOm_8eOSrlDuoTmnMuPpI9TpnmitF98u00pEscr0c7Hjez5ial2PiUmwrHtAjOxqamn1L-W5rvwXvMOIyhorPBxucSyiHZ9TYWPHqJB-T254-bs9-Ti6tf52ezi4kTio2TFmjHrAKvBHWoWslpr2irreUtcqk7OfdOaysQpXa0LuWxY1IIqXovoOMH5HzLO0_2ztznsLT52SQbzAZIeWFsHoOLaKjrWucdWC6lqJexjCKA7nvoevDQVq6TLdf9ql_i3NWVso3vSN9nhvDHLNKjUVWo0GsxX14IcnpYYRnNMhSHMdoB06oYxqSiIBQXtRS2pS6nUjL61zEUzNpHs_HRrH00Gx9ry-e38l4b_rvG_wEoj5g_</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Jardim, Vinícius Carvalho</creator><creator>Santos, Suzana de Siqueira</creator><creator>Fujita, Andre</creator><creator>Buckeridge, Marcos Silveira</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190621</creationdate><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><author>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>coexpression network</topic><topic>correlation network</topic><topic>differential coexpression</topic><topic>differential network analysis</topic><topic>Genetics</topic><topic>systems biology</topic><topic>systems biology tool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jardim, Vinícius Carvalho</creatorcontrib><creatorcontrib>Santos, Suzana de Siqueira</creatorcontrib><creatorcontrib>Fujita, Andre</creatorcontrib><creatorcontrib>Buckeridge, Marcos Silveira</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jardim, Vinícius Carvalho</au><au>Santos, Suzana de Siqueira</au><au>Fujita, Andre</au><au>Buckeridge, Marcos Silveira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BioNetStat: A Tool for Biological Networks Differential Analysis</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>10</volume><spage>594</spage><epage>594</epage><pages>594-594</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31293621</pmid><doi>10.3389/fgene.2019.00594</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-8021 |
ispartof | Frontiers in genetics, 2019-06, Vol.10, p.594-594 |
issn | 1664-8021 1664-8021 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07 |
source | Open Access: PubMed Central |
subjects | coexpression network correlation network differential coexpression differential network analysis Genetics systems biology systems biology tool |
title | BioNetStat: A Tool for Biological Networks Differential Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BioNetStat:%20A%20Tool%20for%20Biological%20Networks%20Differential%20Analysis&rft.jtitle=Frontiers%20in%20genetics&rft.au=Jardim,%20Vin%C3%ADcius%20Carvalho&rft.date=2019-06-21&rft.volume=10&rft.spage=594&rft.epage=594&rft.pages=594-594&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2019.00594&rft_dat=%3Cproquest_doaj_%3E2256104634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2256104634&rft_id=info:pmid/31293621&rfr_iscdi=true |