Loading…

BioNetStat: A Tool for Biological Networks Differential Analysis

The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g.,...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics 2019-06, Vol.10, p.594-594
Main Authors: Jardim, Vinícius Carvalho, Santos, Suzana de Siqueira, Fujita, Andre, Buckeridge, Marcos Silveira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083
cites cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083
container_end_page 594
container_issue
container_start_page 594
container_title Frontiers in genetics
container_volume 10
creator Jardim, Vinícius Carvalho
Santos, Suzana de Siqueira
Fujita, Andre
Buckeridge, Marcos Silveira
description The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.
doi_str_mv 10.3389/fgene.2019.00594
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07</doaj_id><sourcerecordid>2256104634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</originalsourceid><addsrcrecordid>eNpVUU1PGzEQtSpQQcC9p2qPvSQdf-6aA2qgX0gIDsDZ8jrj1NRZg70B8e_rJBSBL2O9mXnzZh4hnyhMOe_0V7_AAacMqJ4CSC0-kH2qlJh0wOjOm_8eOSrlDuoTmnMuPpI9TpnmitF98u00pEscr0c7Hjez5ial2PiUmwrHtAjOxqamn1L-W5rvwXvMOIyhorPBxucSyiHZ9TYWPHqJB-T254-bs9-Ti6tf52ezi4kTio2TFmjHrAKvBHWoWslpr2irreUtcqk7OfdOaysQpXa0LuWxY1IIqXovoOMH5HzLO0_2ztznsLT52SQbzAZIeWFsHoOLaKjrWucdWC6lqJexjCKA7nvoevDQVq6TLdf9ql_i3NWVso3vSN9nhvDHLNKjUVWo0GsxX14IcnpYYRnNMhSHMdoB06oYxqSiIBQXtRS2pS6nUjL61zEUzNpHs_HRrH00Gx9ry-e38l4b_rvG_wEoj5g_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256104634</pqid></control><display><type>article</type><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><source>Open Access: PubMed Central</source><creator>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</creator><creatorcontrib>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</creatorcontrib><description>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2019.00594</identifier><identifier>PMID: 31293621</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>coexpression network ; correlation network ; differential coexpression ; differential network analysis ; Genetics ; systems biology ; systems biology tool</subject><ispartof>Frontiers in genetics, 2019-06, Vol.10, p.594-594</ispartof><rights>Copyright © 2019 Jardim, Santos, Fujita and Buckeridge. 2019 Jardim, Santos, Fujita and Buckeridge</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</citedby><cites>FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31293621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jardim, Vinícius Carvalho</creatorcontrib><creatorcontrib>Santos, Suzana de Siqueira</creatorcontrib><creatorcontrib>Fujita, Andre</creatorcontrib><creatorcontrib>Buckeridge, Marcos Silveira</creatorcontrib><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</description><subject>coexpression network</subject><subject>correlation network</subject><subject>differential coexpression</subject><subject>differential network analysis</subject><subject>Genetics</subject><subject>systems biology</subject><subject>systems biology tool</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1PGzEQtSpQQcC9p2qPvSQdf-6aA2qgX0gIDsDZ8jrj1NRZg70B8e_rJBSBL2O9mXnzZh4hnyhMOe_0V7_AAacMqJ4CSC0-kH2qlJh0wOjOm_8eOSrlDuoTmnMuPpI9TpnmitF98u00pEscr0c7Hjez5ial2PiUmwrHtAjOxqamn1L-W5rvwXvMOIyhorPBxucSyiHZ9TYWPHqJB-T254-bs9-Ti6tf52ezi4kTio2TFmjHrAKvBHWoWslpr2irreUtcqk7OfdOaysQpXa0LuWxY1IIqXovoOMH5HzLO0_2ztznsLT52SQbzAZIeWFsHoOLaKjrWucdWC6lqJexjCKA7nvoevDQVq6TLdf9ql_i3NWVso3vSN9nhvDHLNKjUVWo0GsxX14IcnpYYRnNMhSHMdoB06oYxqSiIBQXtRS2pS6nUjL61zEUzNpHs_HRrH00Gx9ry-e38l4b_rvG_wEoj5g_</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Jardim, Vinícius Carvalho</creator><creator>Santos, Suzana de Siqueira</creator><creator>Fujita, Andre</creator><creator>Buckeridge, Marcos Silveira</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190621</creationdate><title>BioNetStat: A Tool for Biological Networks Differential Analysis</title><author>Jardim, Vinícius Carvalho ; Santos, Suzana de Siqueira ; Fujita, Andre ; Buckeridge, Marcos Silveira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>coexpression network</topic><topic>correlation network</topic><topic>differential coexpression</topic><topic>differential network analysis</topic><topic>Genetics</topic><topic>systems biology</topic><topic>systems biology tool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jardim, Vinícius Carvalho</creatorcontrib><creatorcontrib>Santos, Suzana de Siqueira</creatorcontrib><creatorcontrib>Fujita, Andre</creatorcontrib><creatorcontrib>Buckeridge, Marcos Silveira</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jardim, Vinícius Carvalho</au><au>Santos, Suzana de Siqueira</au><au>Fujita, Andre</au><au>Buckeridge, Marcos Silveira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BioNetStat: A Tool for Biological Networks Differential Analysis</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>10</volume><spage>594</spage><epage>594</epage><pages>594-594</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>The study of interactions among biological components can be carried out by using methods grounded on network theory. Most of these methods focus on the comparison of two biological networks (e.g., control vs. disease). However, biological systems often present more than two biological states (e.g., tumor grades). To compare two or more networks simultaneously, we developed BioNetStat, a Bioconductor package with a user-friendly graphical interface. BioNetStat compares correlation networks based on the probability distribution of a feature of the graph (e.g., centrality measures). The analysis of the structural alterations on the network reveals significant modifications in the system. For example, the analysis of centrality measures provides information about how the relevance of the nodes changes among the biological states. We evaluated the performance of BioNetStat in both, toy models and two case studies. The latter related to gene expression of tumor cells and plant metabolism. Results based on simulated scenarios suggest that the statistical power of BioNetStat is less sensitive to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA). Also, besides being able to identify nodes with modified centralities, BioNetStat identified altered networks associated with signaling pathways that were not identified by other methods.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>31293621</pmid><doi>10.3389/fgene.2019.00594</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-8021
ispartof Frontiers in genetics, 2019-06, Vol.10, p.594-594
issn 1664-8021
1664-8021
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1c87cfc0a3554059a21e009bb08b0f07
source Open Access: PubMed Central
subjects coexpression network
correlation network
differential coexpression
differential network analysis
Genetics
systems biology
systems biology tool
title BioNetStat: A Tool for Biological Networks Differential Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BioNetStat:%20A%20Tool%20for%20Biological%20Networks%20Differential%20Analysis&rft.jtitle=Frontiers%20in%20genetics&rft.au=Jardim,%20Vin%C3%ADcius%20Carvalho&rft.date=2019-06-21&rft.volume=10&rft.spage=594&rft.epage=594&rft.pages=594-594&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2019.00594&rft_dat=%3Cproquest_doaj_%3E2256104634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-70182a60f641ce67531b6179aa37e35985dfc99a4ee59c1019fe8254456bf4083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2256104634&rft_id=info:pmid/31293621&rfr_iscdi=true