Loading…

Artificial neural network prediction of quantitative structure: Retention relationships of polycyclic aromatic hydocarbons in gas chromatography

A feed-forward artificial neural network (ANN) model was used to link molecular structures (boiling points, connectivity indices and molecular weights) and retention indices of polycyclic aromatic hydrocarbons (PAHs) in linear temperature- programmed gas chromatography. A randomly taken subset of PA...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Serbian Chemical Society 2005-01, Vol.70 (11), p.1291-1300
Main Authors: Sremac, Snezana, Skrbic, Biljana, Onjia, Antonije
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A feed-forward artificial neural network (ANN) model was used to link molecular structures (boiling points, connectivity indices and molecular weights) and retention indices of polycyclic aromatic hydrocarbons (PAHs) in linear temperature- programmed gas chromatography. A randomly taken subset of PAH retention data reported by Lee et al. [Anal. Chem. 51 (1979) 768], containing retention index data for 30 PAHs, was used to make the ANN model. The prediction ability of the trained ANN was tested on unseen data for 18 PAHs from the same article, as well as on the retention data for 7 PAHs experimentally obtained in this work. In addition, two different data sets with known retention indices taken from the literature were analyzed by the same ANN model. It has been shown that the relative accuracy as the degree of agreement between the measured and the predicted retention indices in all testing sets, for most of the studied PAHs, were within the experimental error margins (+-3 %). U radu je koriscen model vestackih neuronskih mreza ANN radi povezivanja karakteristika strukture molekula: tacke kljucanja, indeksa konektiviteta i molekulske mase sa retencionim indeksima policiklicnih aromaticnih ugljovodonika PAH-ova) u linearnoj temperaturno-programiranoj gasnoj hromatografiji. ANN model je dobijen nesumicnim uzimanjem retencionih indeksa za 30 PAH-ova, koje je objavili Lee i sar. [Anal. Chem. 51 (1979) 768]. Izucavani model je ispitan sa retencionim podacima 18 PAH-ova iz istog rada, kao i sa retencionim indeksima 7 PAH-ova eksperimentalno dobijenih u ovom radu. Takodje, dva razlicita skupa podataka sa poznatim retencionim indeksima su uzeta iz literature i analizirana pomocu istog ANN modela. Pokazano je dobro slaganje izmecu izmerenih i predvidjenih retencionih indeksa za sve ispitivane setove podataka, pri cemu je ono za najveci broj analiziranih PAH-ova, u okviru eksperimentalne greske od +-3 %.
ISSN:0352-5139
1820-7421
DOI:10.2298/JSC0511291S