Loading…
Comparison of the performance of the IDEXX SediVue Dx® with manual microscopy for the detection of cells and 2 crystal types in canine and feline urine
Background Microscopic evaluation of urine is inconsistently performed in veterinary clinics. The IDEXX SediVue Dx® Urine Sediment Analyzer (SediVue) recently was introduced for automated analysis of canine and feline urine and may facilitate performance of urinalyses in practice. Objective Compare...
Saved in:
Published in: | Journal of veterinary internal medicine 2019-01, Vol.33 (1), p.167-177 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Microscopic evaluation of urine is inconsistently performed in veterinary clinics. The IDEXX SediVue Dx® Urine Sediment Analyzer (SediVue) recently was introduced for automated analysis of canine and feline urine and may facilitate performance of urinalyses in practice.
Objective
Compare the performance of the SediVue with manual microscopy for detecting clinically relevant numbers of cells and 2 crystal types.
Samples
Five‐hundred thirty urine samples (82% canine, 18% feline).
Methods
For SediVue analysis (software versions [SW] 1.0.0.0 and 1.0.1.3), uncentrifuged urine was pipetted into a cartridge. Images were captured and processed using a convolutional neural network algorithm. For manual microscopy, urine was centrifuged to obtain sediment. To determine sensitivity and specificity of the SediVue compared with manual microscopy, thresholds were set at ≥5/high power field (hpf) for red blood cells (RBC) and white blood cells (WBC) and ≥1/hpf for squamous epithelial cells (sqEPI), non‐squamous epithelial cells (nsEPI), struvite crystals (STR), and calcium oxalate dihydrate crystals (CaOx Di).
Results
The sensitivity of the SediVue (SW1.0.1.3) was 85%‐90% for the detection of RBC, WBC, and STR; 75% for CaOx Di; 71% for nsEPI; and 33% for sqEPI. Specificity was 99% for sqEPI and CaOx Di; 87%‐90% for RBC, WBC, and nsEPI; and 84% for STR. Compared to SW1.0.0.0, SW1.0.1.3 had increased sensitivity but decreased specificity. Performance was similar for canine versus feline and fresh versus stored urine samples.
Conclusions and Clinical Importance
The SediVue exhibits good agreement with manual microscopy for the detection of most formed elements evaluated, but improvement is needed for epithelial cells. |
---|---|
ISSN: | 0891-6640 1939-1676 |
DOI: | 10.1111/jvim.15341 |