Loading…
Nonlinear effects in memristors with mobile vacancies
Because local concentration of vacancies in any material is bounded, their motion must be accompanied by nonlinear effects. Here, we look for such effects in a simple model for electric field-driven vacancy motion in a memristor, solving the corresponding nonlinear Burgers' equation with imperm...
Saved in:
Published in: | Royal Society open science 2021-10, Vol.8 (10), p.210677-210677 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because local concentration of vacancies in any material is bounded, their motion must be accompanied by nonlinear effects. Here, we look for such effects in a simple model for electric field-driven vacancy motion in a memristor, solving the corresponding nonlinear Burgers' equation with impermeable nonlinear boundary conditions exactly. We find non-monotonous relaxation of the resistance while switching between the stable ('on' and 'off') states, and qualitatively different dependencies of switching time (under applied current) and relaxation time (under no current) on the memristor length. Our solution can serve as a useful benchmark for simulations of more complex memristor models. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.210677 |