Loading…

Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

Localized magnetic hyperthermia using magnetic nanoparticles (MNPs) under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2015-01, Vol.5 (1), p.63-89
Main Authors: Obaidat, Ihab M, Issa, Bashar, Haik, Yousef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Localized magnetic hyperthermia using magnetic nanoparticles (MNPs) under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano5010063