Loading…
Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques
Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to preve...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-05, Vol.15 (9), p.2450 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313 |
container_end_page | |
container_issue | 9 |
container_start_page | 2450 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Shahi, Tej Bahadur Xu, Cheng-Yuan Neupane, Arjun Guo, William |
description | Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection. |
doi_str_mv | 10.3390/rs15092450 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750635025</galeid><doaj_id>oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8</doaj_id><sourcerecordid>A750635025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</originalsourceid><addsrcrecordid>eNpNkVFrGzEMx4-yQUvXl34CQ98KyWT7fHd-DOnaFQIbo-mr0dly6tDaqX0Z7NvPaco66UHih_TnL9Q0lxzmUmr4mgtXoEWr4KQ5E9CLWSu0-PRff9pclLKFGlJyDe1Z8_MXWYoTW7jfGC0VFiJb5rRjN6EQFmI3NJGdQopsXULcsPXikWF0ldOOrQhzPNAHsk8xvO6pfGk-e3wudPFez5v17beH5ffZ6sfd_XKxmtkWYJp1yo5A0gkhkDsa3QjaKqtGW1FrB9XL3muPXd-3qBUOmkvHLeeVI0guz5v7o65LuDW7HF4w_zEJg3kDKW8M5inYZzLceg567HDw0GoSmpR3GqXqxDjgOFStq6PWLqfDDZPZpn2O1b4RAxd9Kzou6tT8OLXBKhqiT1NGW9PRS7Apkg-VL3oFnVQgVF24Pi7YnErJ5P_Z5GAOHzMfH5N_Aff-ha0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812742612</pqid></control><display><type>article</type><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><source>Publicly Available Content Database</source><creator>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</creator><creatorcontrib>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</creatorcontrib><description>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15092450</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial photography ; Agricultural production ; Agricultural research ; Artificial intelligence ; crop disease ; Crop diseases ; Crop yield ; Crop yields ; Crops ; Data analysis ; Deep learning ; detection ; Disease detection ; drone ; Drone aircraft ; Drone vehicles ; Estimation ; Image processing ; Information management ; Internet of Things ; Learning algorithms ; Machine learning ; Plant diseases ; Precision farming ; Radiation ; Remote sensing ; Remote sensors ; Sensors ; Taxonomy ; UAV ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (9), p.2450</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</citedby><cites>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</cites><orcidid>0000-0002-0616-3180 ; 0000-0002-3134-3327 ; 0000-0002-1010-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812742612/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812742612?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Shahi, Tej Bahadur</creatorcontrib><creatorcontrib>Xu, Cheng-Yuan</creatorcontrib><creatorcontrib>Neupane, Arjun</creatorcontrib><creatorcontrib>Guo, William</creatorcontrib><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><title>Remote sensing (Basel, Switzerland)</title><description>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</description><subject>Aerial photography</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Artificial intelligence</subject><subject>crop disease</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>detection</subject><subject>Disease detection</subject><subject>drone</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Estimation</subject><subject>Image processing</subject><subject>Information management</subject><subject>Internet of Things</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Plant diseases</subject><subject>Precision farming</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Taxonomy</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrGzEMx4-yQUvXl34CQ98KyWT7fHd-DOnaFQIbo-mr0dly6tDaqX0Z7NvPaco66UHih_TnL9Q0lxzmUmr4mgtXoEWr4KQ5E9CLWSu0-PRff9pclLKFGlJyDe1Z8_MXWYoTW7jfGC0VFiJb5rRjN6EQFmI3NJGdQopsXULcsPXikWF0ldOOrQhzPNAHsk8xvO6pfGk-e3wudPFez5v17beH5ffZ6sfd_XKxmtkWYJp1yo5A0gkhkDsa3QjaKqtGW1FrB9XL3muPXd-3qBUOmkvHLeeVI0guz5v7o65LuDW7HF4w_zEJg3kDKW8M5inYZzLceg567HDw0GoSmpR3GqXqxDjgOFStq6PWLqfDDZPZpn2O1b4RAxd9Kzou6tT8OLXBKhqiT1NGW9PRS7Apkg-VL3oFnVQgVF24Pi7YnErJ5P_Z5GAOHzMfH5N_Aff-ha0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Shahi, Tej Bahadur</creator><creator>Xu, Cheng-Yuan</creator><creator>Neupane, Arjun</creator><creator>Guo, William</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0616-3180</orcidid><orcidid>https://orcid.org/0000-0002-3134-3327</orcidid><orcidid>https://orcid.org/0000-0002-1010-7552</orcidid></search><sort><creationdate>20230501</creationdate><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><author>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial photography</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Artificial intelligence</topic><topic>crop disease</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>detection</topic><topic>Disease detection</topic><topic>drone</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Estimation</topic><topic>Image processing</topic><topic>Information management</topic><topic>Internet of Things</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Plant diseases</topic><topic>Precision farming</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Taxonomy</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahi, Tej Bahadur</creatorcontrib><creatorcontrib>Xu, Cheng-Yuan</creatorcontrib><creatorcontrib>Neupane, Arjun</creatorcontrib><creatorcontrib>Guo, William</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahi, Tej Bahadur</au><au>Xu, Cheng-Yuan</au><au>Neupane, Arjun</au><au>Guo, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>2450</spage><pages>2450-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15092450</doi><orcidid>https://orcid.org/0000-0002-0616-3180</orcidid><orcidid>https://orcid.org/0000-0002-3134-3327</orcidid><orcidid>https://orcid.org/0000-0002-1010-7552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (9), p.2450 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8 |
source | Publicly Available Content Database |
subjects | Aerial photography Agricultural production Agricultural research Artificial intelligence crop disease Crop diseases Crop yield Crop yields Crops Data analysis Deep learning detection Disease detection drone Drone aircraft Drone vehicles Estimation Image processing Information management Internet of Things Learning algorithms Machine learning Plant diseases Precision farming Radiation Remote sensing Remote sensors Sensors Taxonomy UAV Unmanned aerial vehicles Vegetation |
title | Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Crop%20Disease%20Detection%20Using%20UAV%20and%20Deep%20Learning%20Techniques&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Shahi,%20Tej%20Bahadur&rft.date=2023-05-01&rft.volume=15&rft.issue=9&rft.spage=2450&rft.pages=2450-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15092450&rft_dat=%3Cgale_doaj_%3EA750635025%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812742612&rft_id=info:pmid/&rft_galeid=A750635025&rfr_iscdi=true |