Loading…

Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques

Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to preve...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-05, Vol.15 (9), p.2450
Main Authors: Shahi, Tej Bahadur, Xu, Cheng-Yuan, Neupane, Arjun, Guo, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313
cites cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313
container_end_page
container_issue 9
container_start_page 2450
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Shahi, Tej Bahadur
Xu, Cheng-Yuan
Neupane, Arjun
Guo, William
description Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.
doi_str_mv 10.3390/rs15092450
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750635025</galeid><doaj_id>oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8</doaj_id><sourcerecordid>A750635025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</originalsourceid><addsrcrecordid>eNpNkVFrGzEMx4-yQUvXl34CQ98KyWT7fHd-DOnaFQIbo-mr0dly6tDaqX0Z7NvPaco66UHih_TnL9Q0lxzmUmr4mgtXoEWr4KQ5E9CLWSu0-PRff9pclLKFGlJyDe1Z8_MXWYoTW7jfGC0VFiJb5rRjN6EQFmI3NJGdQopsXULcsPXikWF0ldOOrQhzPNAHsk8xvO6pfGk-e3wudPFez5v17beH5ffZ6sfd_XKxmtkWYJp1yo5A0gkhkDsa3QjaKqtGW1FrB9XL3muPXd-3qBUOmkvHLeeVI0guz5v7o65LuDW7HF4w_zEJg3kDKW8M5inYZzLceg567HDw0GoSmpR3GqXqxDjgOFStq6PWLqfDDZPZpn2O1b4RAxd9Kzou6tT8OLXBKhqiT1NGW9PRS7Apkg-VL3oFnVQgVF24Pi7YnErJ5P_Z5GAOHzMfH5N_Aff-ha0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812742612</pqid></control><display><type>article</type><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><source>Publicly Available Content Database</source><creator>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</creator><creatorcontrib>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</creatorcontrib><description>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15092450</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerial photography ; Agricultural production ; Agricultural research ; Artificial intelligence ; crop disease ; Crop diseases ; Crop yield ; Crop yields ; Crops ; Data analysis ; Deep learning ; detection ; Disease detection ; drone ; Drone aircraft ; Drone vehicles ; Estimation ; Image processing ; Information management ; Internet of Things ; Learning algorithms ; Machine learning ; Plant diseases ; Precision farming ; Radiation ; Remote sensing ; Remote sensors ; Sensors ; Taxonomy ; UAV ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (9), p.2450</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</citedby><cites>FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</cites><orcidid>0000-0002-0616-3180 ; 0000-0002-3134-3327 ; 0000-0002-1010-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812742612/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812742612?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Shahi, Tej Bahadur</creatorcontrib><creatorcontrib>Xu, Cheng-Yuan</creatorcontrib><creatorcontrib>Neupane, Arjun</creatorcontrib><creatorcontrib>Guo, William</creatorcontrib><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><title>Remote sensing (Basel, Switzerland)</title><description>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</description><subject>Aerial photography</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Artificial intelligence</subject><subject>crop disease</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>detection</subject><subject>Disease detection</subject><subject>drone</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Estimation</subject><subject>Image processing</subject><subject>Information management</subject><subject>Internet of Things</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Plant diseases</subject><subject>Precision farming</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Taxonomy</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrGzEMx4-yQUvXl34CQ98KyWT7fHd-DOnaFQIbo-mr0dly6tDaqX0Z7NvPaco66UHih_TnL9Q0lxzmUmr4mgtXoEWr4KQ5E9CLWSu0-PRff9pclLKFGlJyDe1Z8_MXWYoTW7jfGC0VFiJb5rRjN6EQFmI3NJGdQopsXULcsPXikWF0ldOOrQhzPNAHsk8xvO6pfGk-e3wudPFez5v17beH5ffZ6sfd_XKxmtkWYJp1yo5A0gkhkDsa3QjaKqtGW1FrB9XL3muPXd-3qBUOmkvHLeeVI0guz5v7o65LuDW7HF4w_zEJg3kDKW8M5inYZzLceg567HDw0GoSmpR3GqXqxDjgOFStq6PWLqfDDZPZpn2O1b4RAxd9Kzou6tT8OLXBKhqiT1NGW9PRS7Apkg-VL3oFnVQgVF24Pi7YnErJ5P_Z5GAOHzMfH5N_Aff-ha0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Shahi, Tej Bahadur</creator><creator>Xu, Cheng-Yuan</creator><creator>Neupane, Arjun</creator><creator>Guo, William</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0616-3180</orcidid><orcidid>https://orcid.org/0000-0002-3134-3327</orcidid><orcidid>https://orcid.org/0000-0002-1010-7552</orcidid></search><sort><creationdate>20230501</creationdate><title>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</title><author>Shahi, Tej Bahadur ; Xu, Cheng-Yuan ; Neupane, Arjun ; Guo, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial photography</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Artificial intelligence</topic><topic>crop disease</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>detection</topic><topic>Disease detection</topic><topic>drone</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Estimation</topic><topic>Image processing</topic><topic>Information management</topic><topic>Internet of Things</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Plant diseases</topic><topic>Precision farming</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Taxonomy</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahi, Tej Bahadur</creatorcontrib><creatorcontrib>Xu, Cheng-Yuan</creatorcontrib><creatorcontrib>Neupane, Arjun</creatorcontrib><creatorcontrib>Guo, William</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahi, Tej Bahadur</au><au>Xu, Cheng-Yuan</au><au>Neupane, Arjun</au><au>Guo, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>2450</spage><pages>2450-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Because of the recent advances in drones or Unmanned Aerial Vehicle (UAV) platforms, sensors and software, UAVs have gained popularity among precision agriculture researchers and stakeholders for estimating traits such as crop yield and diseases. Early detection of crop disease is essential to prevent possible losses on crop yield and ultimately increasing the benefits. However, accurate estimation of crop disease requires modern data analysis techniques such as machine learning and deep learning. This work aims to review the actual progress in crop disease detection, with an emphasis on machine learning and deep learning techniques using UAV-based remote sensing. First, we present the importance of different sensors and image-processing techniques for improving crop disease estimation with UAV imagery. Second, we propose a taxonomy to accumulate and categorize the existing works on crop disease detection with UAV imagery. Third, we analyze and summarize the performance of various machine learning and deep learning methods for crop disease detection. Finally, we underscore the challenges, opportunities and research directions of UAV-based remote sensing for crop disease detection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15092450</doi><orcidid>https://orcid.org/0000-0002-0616-3180</orcidid><orcidid>https://orcid.org/0000-0002-3134-3327</orcidid><orcidid>https://orcid.org/0000-0002-1010-7552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-05, Vol.15 (9), p.2450
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1cf109b6a8f049e29e5fd9a3562b8ab8
source Publicly Available Content Database
subjects Aerial photography
Agricultural production
Agricultural research
Artificial intelligence
crop disease
Crop diseases
Crop yield
Crop yields
Crops
Data analysis
Deep learning
detection
Disease detection
drone
Drone aircraft
Drone vehicles
Estimation
Image processing
Information management
Internet of Things
Learning algorithms
Machine learning
Plant diseases
Precision farming
Radiation
Remote sensing
Remote sensors
Sensors
Taxonomy
UAV
Unmanned aerial vehicles
Vegetation
title Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Crop%20Disease%20Detection%20Using%20UAV%20and%20Deep%20Learning%20Techniques&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Shahi,%20Tej%20Bahadur&rft.date=2023-05-01&rft.volume=15&rft.issue=9&rft.spage=2450&rft.pages=2450-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15092450&rft_dat=%3Cgale_doaj_%3EA750635025%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-65cb0e3d222a1debdb09c5c5bcd224c85737f9fa6774a95a8913d1c11737a0313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812742612&rft_id=info:pmid/&rft_galeid=A750635025&rfr_iscdi=true