Loading…

Effect of heavy metals on the energy metabolism in the brackish water flea Diaphanosoma celebensis

Heavy metals such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in aquatic ecosystems because of their global distribution, persistence, and biomagnification via the food web. They can induce the expression of cellular protective systems (e.g., detoxification enzymes and antioxid...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety 2023-09, Vol.262, p.115189-115189, Article 115189
Main Authors: Lee, Jiyoon, Jeon, Min Jeong, Won, Eun-Ji, Yoo, Je-won, Lee, Young-Mi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heavy metals such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in aquatic ecosystems because of their global distribution, persistence, and biomagnification via the food web. They can induce the expression of cellular protective systems (e.g., detoxification enzymes and antioxidant enzymes) to protect organisms from oxidative stress, which is a high-energy-consuming process. Thus, energy reserves (e.g., glycogen, lipids, and proteins) are utilized to maintain metabolic homeostasis. Although a few studies have suggested that heavy metal stress can modulate the metabolic cycle in crustaceans, information on changes in energy metabolism under metal pollution remains lacking in planktonic crustaceans. In the present study, the activity of digestive enzymes (amylase, trypsin, and lipase) and the contents of energy storage molecules (glycogen, lipid, and protein) were examined in the brackish water flea Diaphanosoma celebensis exposed to Cd, Pb, and As for 48 h. Transcriptional modulation of the three AMP-activated protein kinase (AMPK) and metabolic pathway-related genes was further investigated. Amylase activity was highly increased in all heavy metal-exposed groups, whereas trypsin activity was reduced in Cd- and As-exposed groups. While glycogen content was increased in all exposed groups in a concentration-dependent manner, lipid content was reduced at higher concentrations of heavy metals. The expression of AMPKs and metabolic pathway-related genes was distinct among heavy metals. In particular, Cd activated the transcription of AMPK-, glucose/lipid metabolism-, and protein synthesis-related genes. Our findings indicate that Cd can disrupt energy metabolism, and may be a potent metabolic toxicant in D. celebensis. This study provides insights into the molecular mode of action of heavy metal pollution on the energy metabolism in planktonic crustaceans. [Display omitted] •Amylase activity increased in all heavy metal-exposed groups.•Trypsin activity decreased in the Cd- and As-exposed groups.•Glycogen and lipid contents were modulated at varying metal concentration.•Cd activates the transcription of metabolism-related genes.•Cd may be a potent metabolic toxicant in D. celebensis.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2023.115189