Loading…
Data for glomeruli characterization in histopathological images
The data presented in this article is part of the whole slide imaging (WSI) datasets generated in European project AIDPATH 2 This data is also related to the research paper entitle “Glomerulosclerosis Identification in Whole Slide Images using Semantic Segmentation”, published in Computer Methods an...
Saved in:
Published in: | Data in brief 2020-04, Vol.29, p.105314-105314, Article 105314 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The data presented in this article is part of the whole slide imaging (WSI) datasets generated in European project AIDPATH 2 This data is also related to the research paper entitle “Glomerulosclerosis Identification in Whole Slide Images using Semantic Segmentation”, published in Computer Methods and Programs in Biomedicine Journal [1]. In that article, different methods based on deep learning for glomeruli segmentation and their classification into normal and sclerotic glomerulous are presented and discussed. The raw data used is described and provided here. In addition, the detected glomeruli are also provided as individual image files. These data will encourage research on artificial intelligence (AI) methods, create and compare fresh algorithms, and measure their usability in quantitative nephropathology. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2020.105314 |