Loading…

Atmospheric Turbulence Intensity Image Acquisition Method Based on Convolutional Neural Network

An algorithmic model of a neural network with channel attention and spatial attention (CASANet) is proposed to estimate the value of atmospheric coherence length, which in turn provides a quantitative description of atmospheric turbulence intensity. By processing the acquired spot image data, the ch...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2025-01, Vol.17 (1), p.103
Main Authors: Mu, Yuan, Zhou, Liangping, Shao, Shiyong, Wang, Zhiqiang, Tang, Pei, Hu, Zhiyuan, Ye, Liwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An algorithmic model of a neural network with channel attention and spatial attention (CASANet) is proposed to estimate the value of atmospheric coherence length, which in turn provides a quantitative description of atmospheric turbulence intensity. By processing the acquired spot image data, the channel attention and spatial attention mechanisms are utilized, and the convolutional neural network learns the interdependence between the channel and space of the feature image and adaptively recalibrates the feature response in terms of the channel to increase the contribution of the foreground spot and suppress the background features. Based on the experimental data, an analysis of the CASANet model subject to turbulence intensity perturbations, fluctuations in outgoing power, and fluctuations in beam quality at the outlet is carried out. Comparison of the results of the convolutional neural network with those of the inverse method and the differential image motion method shows that the convolutional neural network is optimal in three evaluation indexes, namely, the mean deviation, the root-mean-square error, and the correlation coefficient, which are 2.74, 3.35, and 0.94, respectively. The convolutional neural network exhibits high accuracy under moderate and weak turbulence, and the estimation values under strong turbulence conditions are still mostly within the 95% confidence interval. The above results fully demonstrate that the proposed convolutional neural network method can effectively estimate the atmospheric coherence length, which provides technical support for the inversion of atmospheric turbulence intensity based on images.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs17010103