Loading…

A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks

This paper is concerned with an imperative operational problem, called the optimal power flow (OPF), which has several technical and economic points of view with respect the environmental concerns. This paper proposes a multiple-objective optimizer NSWOA (non-dominated sorting whale optimization alg...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-04, Vol.15 (7), p.2378
Main Authors: El-Dabah, Mahmoud, Ebrahim, Mohamed A., El-Sehiemy, Ragab A., Alaas, Z., Ramadan, M. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with an imperative operational problem, called the optimal power flow (OPF), which has several technical and economic points of view with respect the environmental concerns. This paper proposes a multiple-objective optimizer NSWOA (non-dominated sorting whale optimization algorithm) for resolving single-objective OPFs, as well as multi-objective frameworks. With a variety of technical and economic power system objectives, the OPF can be formulated. These objectives are treated as single- and multi-objective OPF issues that are deployed with the aid of the proposed NSWOA to solve these OPF formulations. The proposed algorithm modifies the Pareto ranking and analyzes the optimum compromise solution based on the optimal Euclidian distances. This proposed strategy ensures high convergence speed and improves search capabilities. To achieve this study, an IEEE 30-bus (sixth-generation unit system) is investigated, with eight scenarios studied that highlight technical and environmental operational needs. When compared to previous optimization approaches, the suggested NSWOA achieves considerable techno-economic improvements. Additionally, the statical analyses are carried out for 20 separate runs. This analysis proves the high robustness of the proposed NSWOA at low levels of standard deviation.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15072378