Loading…

Printed Electrodes Based on Vanadium Dioxide and Gold Nanoparticles for Asymmetric Supercapacitors

Printed energy storage components attracted attention for being incorporated into bendable electronics. In this research, a homogeneous and stable ink based on vanadium dioxide (VO2) is hydrothermally synthesized with a non-toxic solvent. The structural and morphological properties of the synthesize...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-09, Vol.13 (18), p.2567
Main Authors: Minyawi, Bashaer A., Vaseem, Mohammad, Alhebshi, Nuha A., Al-Amri, Amal M., Shamim, Atif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Printed energy storage components attracted attention for being incorporated into bendable electronics. In this research, a homogeneous and stable ink based on vanadium dioxide (VO2) is hydrothermally synthesized with a non-toxic solvent. The structural and morphological properties of the synthesized material are determined to be well-crystalline monoclinic-phase nanoparticles. The charge storage mechanisms and evaluations are specified for VO2 electrodes, gold (Au) electrodes, and VO2/Au electrodes using cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The VO2 electrode shows an electrical double layer and a redox reaction in the positive and negative voltage ranges with a slightly higher areal capacitance of 9 mF cm−2. The VO2/Au electrode exhibits an areal capacitance of 16 mF cm−2, which is double that of the VO2 electrode. Due to the excellent electrical conductivity of gold, the areal capacitance 18 mF cm−2 of the Au electrode is the highest among them. Based on that, Au positive electrodes and VO2 negative electrodes are used to build an asymmetric supercapacitor. The device delivers an areal energy density of 0.45 μWh cm−2 at an areal power density of 70 μW cm−2 at 1.4 V in the aqueous electrolyte of potassium hydroxide. We provide a promising electrode candidate for cost-effective, lightweight, environmentally friendly printed supercapacitors.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13182567