Loading…
Sensors Data Processing Using Machine Learning
Various sensors utilize computational models to estimate measured variables, and the generated data require processing [...].
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (5), p.1694 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-a651cf14ccc8d8a6af27c446f278347adcb74d142c62a997a596698528de98743 |
container_end_page | |
container_issue | 5 |
container_start_page | 1694 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Kamencay, Patrik Hockicko, Peter Hudec, Robert |
description | Various sensors utilize computational models to estimate measured variables, and the generated data require processing [...]. |
doi_str_mv | 10.3390/s24051694 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d32cb6a1af34992b48e60d00f6ee9c8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786439597</galeid><doaj_id>oai_doaj_org_article_1d32cb6a1af34992b48e60d00f6ee9c8</doaj_id><sourcerecordid>A786439597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-a651cf14ccc8d8a6af27c446f278347adcb74d142c62a997a596698528de98743</originalsourceid><addsrcrecordid>eNpdUk1vEzEQXSEQLYUDfwBF4gKHBH-vfUJV-aoUBBL0bE3Gs6mjjV3sDRL_HqcpUYsseUbPb57n2dN1LzlbSOnYuyoU09w49ag75UqouRWCPb6Xn3TPat0wJqSU9ml3Iq3qtZDstFv8oFRzqbMPMMHse8lItca0nl3d7l8Br2Oi2ZKgpAY8754MMFZ6cRfPuqtPH39efJkvv32-vDhfzlEZN83BaI4DV4hogwUDg-hRKdOClaqHgKtehdYeGgHO9aCdMc5qYQM52yt51l0edEOGjb8pcQvlj88Q_S2Qy9pDmSKO5HmQAlcGOAxSOSdWypJhgbHBEDm0Tev9Qetmt9pSQEpTgfGB6MOTFK_9Ov_2nDmpmTNN4c2dQsm_dlQnv40VaRwhUd5VL5w2xmqldKO-_o-6ybuS2lvtWdpxxvTe3uLAWkNzENOQ28XYVqBtxJxoiA0_761R0mnXt4K3hwIsudZCw7F9zvx-BvxxBhr31X2_R-a_T5d_AQk1qUs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955910054</pqid></control><display><type>article</type><title>Sensors Data Processing Using Machine Learning</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Kamencay, Patrik ; Hockicko, Peter ; Hudec, Robert</creator><creatorcontrib>Kamencay, Patrik ; Hockicko, Peter ; Hudec, Robert</creatorcontrib><description>Various sensors utilize computational models to estimate measured variables, and the generated data require processing [...].</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24051694</identifier><identifier>PMID: 38475230</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Automation ; Classrooms ; Data mining ; Data processing ; Datasets ; Deep learning ; Infrastructure ; Internet of Things ; Localization ; Machine learning ; n/a ; Neural networks ; Optimization ; Portable computers ; R&D ; Research & development ; Sensors ; Sentiment analysis ; Social networks ; Support vector machines ; Teachers ; Toxicity</subject><ispartof>Sensors (Basel, Switzerland), 2024-03, Vol.24 (5), p.1694</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-a651cf14ccc8d8a6af27c446f278347adcb74d142c62a997a596698528de98743</cites><orcidid>0000-0003-4875-973X ; 0000-0002-2928-9413 ; 0000-0001-7543-5664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2955910054/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955910054?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38475230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamencay, Patrik</creatorcontrib><creatorcontrib>Hockicko, Peter</creatorcontrib><creatorcontrib>Hudec, Robert</creatorcontrib><title>Sensors Data Processing Using Machine Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Various sensors utilize computational models to estimate measured variables, and the generated data require processing [...].</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Classrooms</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Infrastructure</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Machine learning</subject><subject>n/a</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Portable computers</subject><subject>R&D</subject><subject>Research & development</subject><subject>Sensors</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Support vector machines</subject><subject>Teachers</subject><subject>Toxicity</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1vEzEQXSEQLYUDfwBF4gKHBH-vfUJV-aoUBBL0bE3Gs6mjjV3sDRL_HqcpUYsseUbPb57n2dN1LzlbSOnYuyoU09w49ag75UqouRWCPb6Xn3TPat0wJqSU9ml3Iq3qtZDstFv8oFRzqbMPMMHse8lItca0nl3d7l8Br2Oi2ZKgpAY8754MMFZ6cRfPuqtPH39efJkvv32-vDhfzlEZN83BaI4DV4hogwUDg-hRKdOClaqHgKtehdYeGgHO9aCdMc5qYQM52yt51l0edEOGjb8pcQvlj88Q_S2Qy9pDmSKO5HmQAlcGOAxSOSdWypJhgbHBEDm0Tev9Qetmt9pSQEpTgfGB6MOTFK_9Ov_2nDmpmTNN4c2dQsm_dlQnv40VaRwhUd5VL5w2xmqldKO-_o-6ybuS2lvtWdpxxvTe3uLAWkNzENOQ28XYVqBtxJxoiA0_761R0mnXt4K3hwIsudZCw7F9zvx-BvxxBhr31X2_R-a_T5d_AQk1qUs</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Kamencay, Patrik</creator><creator>Hockicko, Peter</creator><creator>Hudec, Robert</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4875-973X</orcidid><orcidid>https://orcid.org/0000-0002-2928-9413</orcidid><orcidid>https://orcid.org/0000-0001-7543-5664</orcidid></search><sort><creationdate>20240306</creationdate><title>Sensors Data Processing Using Machine Learning</title><author>Kamencay, Patrik ; Hockicko, Peter ; Hudec, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-a651cf14ccc8d8a6af27c446f278347adcb74d142c62a997a596698528de98743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Classrooms</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Infrastructure</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Machine learning</topic><topic>n/a</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Portable computers</topic><topic>R&D</topic><topic>Research & development</topic><topic>Sensors</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Support vector machines</topic><topic>Teachers</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamencay, Patrik</creatorcontrib><creatorcontrib>Hockicko, Peter</creatorcontrib><creatorcontrib>Hudec, Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamencay, Patrik</au><au>Hockicko, Peter</au><au>Hudec, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensors Data Processing Using Machine Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>24</volume><issue>5</issue><spage>1694</spage><pages>1694-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Various sensors utilize computational models to estimate measured variables, and the generated data require processing [...].</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38475230</pmid><doi>10.3390/s24051694</doi><orcidid>https://orcid.org/0000-0003-4875-973X</orcidid><orcidid>https://orcid.org/0000-0002-2928-9413</orcidid><orcidid>https://orcid.org/0000-0001-7543-5664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-03, Vol.24 (5), p.1694 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1d32cb6a1af34992b48e60d00f6ee9c8 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Accuracy Algorithms Artificial intelligence Automation Classrooms Data mining Data processing Datasets Deep learning Infrastructure Internet of Things Localization Machine learning n/a Neural networks Optimization Portable computers R&D Research & development Sensors Sentiment analysis Social networks Support vector machines Teachers Toxicity |
title | Sensors Data Processing Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensors%20Data%20Processing%20Using%20Machine%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kamencay,%20Patrik&rft.date=2024-03-06&rft.volume=24&rft.issue=5&rft.spage=1694&rft.pages=1694-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24051694&rft_dat=%3Cgale_doaj_%3EA786439597%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-a651cf14ccc8d8a6af27c446f278347adcb74d142c62a997a596698528de98743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955910054&rft_id=info:pmid/38475230&rft_galeid=A786439597&rfr_iscdi=true |