Loading…

Semiclassical Solutions for a Kind of Coupled Schrödinger Equations

In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2020, Vol.2020 (2020), p.1-6
Main Authors: Fan, Jinmei, Zhang, Qiongfen, Jiang, Yi-rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3
cites cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3
container_end_page 6
container_issue 2020
container_start_page 1
container_title Advances in mathematical physics
container_volume 2020
creator Fan, Jinmei
Zhang, Qiongfen
Jiang, Yi-rong
description In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2
doi_str_mv 10.1155/2020/4378691
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292</doaj_id><sourcerecordid>2438594339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCsrczbMUPOpc817SNkeZU4eCh-k5vKXJ1lGXmayIX8wv4BczW4cezSUh_Pjn5Z8kZyy7ZkyIIWSQDTkWZS7ZQXLC8rIYSIby8PcM2XHSD2GZxYVS5FKcJLdT81brhkKoNTXp1DXtpnarkFrnU0of61WVOpuOXLtuTJVO9cJ_f1X1am58On5vaYdPkyNLTTD9_d5LXu_GL6OHwdPz_WR08zTQXIjNgMoZ15hTVkmeMTCoCQEEFUwKBCYrg2BASp4LY4XgABUxThJ5gQTWYi-ZdLmVo6Va-_qN_KdyVKvdhfNzRX4Tv2MUq4S1kpguYca5BsJZDCICkGUBEmLWRZe19u69NWGjlq71qzi-Ao6lkBxRRnXVKe1dCN7Y31dZpra1q23tal975JcdX8Te6KP-T5932kRjLP1pBgWWOf4Aub2Jsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438594339</pqid></control><display><type>article</type><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong</creator><contributor>Yu, Xin ; Xin Yu</contributor><creatorcontrib>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong ; Yu, Xin ; Xin Yu</creatorcontrib><description>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2&lt;p&lt;2∗,2&lt;q&lt;2∗,2∗=2N/N−2, andN≥3; λ&gt;0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2020/4378691</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Inequality ; Mathematical analysis ; Partial differential equations ; Schrodinger equation</subject><ispartof>Advances in mathematical physics, 2020, Vol.2020 (2020), p.1-6</ispartof><rights>Copyright © 2020 Jinmei Fan et al.</rights><rights>Copyright © 2020 Jinmei Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</citedby><cites>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</cites><orcidid>0000-0002-7037-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438594339/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438594339?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Yu, Xin</contributor><contributor>Xin Yu</contributor><creatorcontrib>Fan, Jinmei</creatorcontrib><creatorcontrib>Zhang, Qiongfen</creatorcontrib><creatorcontrib>Jiang, Yi-rong</creatorcontrib><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><title>Advances in mathematical physics</title><description>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2&lt;p&lt;2∗,2&lt;q&lt;2∗,2∗=2N/N−2, andN≥3; λ&gt;0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</description><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Schrodinger equation</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0EFLwzAUB_AiCsrczbMUPOpc817SNkeZU4eCh-k5vKXJ1lGXmayIX8wv4BczW4cezSUh_Pjn5Z8kZyy7ZkyIIWSQDTkWZS7ZQXLC8rIYSIby8PcM2XHSD2GZxYVS5FKcJLdT81brhkKoNTXp1DXtpnarkFrnU0of61WVOpuOXLtuTJVO9cJ_f1X1am58On5vaYdPkyNLTTD9_d5LXu_GL6OHwdPz_WR08zTQXIjNgMoZ15hTVkmeMTCoCQEEFUwKBCYrg2BASp4LY4XgABUxThJ5gQTWYi-ZdLmVo6Va-_qN_KdyVKvdhfNzRX4Tv2MUq4S1kpguYca5BsJZDCICkGUBEmLWRZe19u69NWGjlq71qzi-Ao6lkBxRRnXVKe1dCN7Y31dZpra1q23tal975JcdX8Te6KP-T5932kRjLP1pBgWWOf4Aub2Jsw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fan, Jinmei</creator><creator>Zhang, Qiongfen</creator><creator>Jiang, Yi-rong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7037-1961</orcidid></search><sort><creationdate>2020</creationdate><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><author>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jinmei</creatorcontrib><creatorcontrib>Zhang, Qiongfen</creatorcontrib><creatorcontrib>Jiang, Yi-rong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jinmei</au><au>Zhang, Qiongfen</au><au>Jiang, Yi-rong</au><au>Yu, Xin</au><au>Xin Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</atitle><jtitle>Advances in mathematical physics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2&lt;p&lt;2∗,2&lt;q&lt;2∗,2∗=2N/N−2, andN≥3; λ&gt;0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4378691</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7037-1961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2020, Vol.2020 (2020), p.1-6
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292
source Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess)
subjects Inequality
Mathematical analysis
Partial differential equations
Schrodinger equation
title Semiclassical Solutions for a Kind of Coupled Schrödinger Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Solutions%20for%20a%20Kind%20of%20Coupled%20Schr%C3%B6dinger%20Equations&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Fan,%20Jinmei&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2020/4378691&rft_dat=%3Cproquest_doaj_%3E2438594339%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438594339&rft_id=info:pmid/&rfr_iscdi=true