Loading…
Semiclassical Solutions for a Kind of Coupled Schrödinger Equations
In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2
Saved in:
Published in: | Advances in mathematical physics 2020, Vol.2020 (2020), p.1-6 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3 |
container_end_page | 6 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2020 |
creator | Fan, Jinmei Zhang, Qiongfen Jiang, Yi-rong |
description | In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2 |
doi_str_mv | 10.1155/2020/4378691 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292</doaj_id><sourcerecordid>2438594339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCsrczbMUPOpc817SNkeZU4eCh-k5vKXJ1lGXmayIX8wv4BczW4cezSUh_Pjn5Z8kZyy7ZkyIIWSQDTkWZS7ZQXLC8rIYSIby8PcM2XHSD2GZxYVS5FKcJLdT81brhkKoNTXp1DXtpnarkFrnU0of61WVOpuOXLtuTJVO9cJ_f1X1am58On5vaYdPkyNLTTD9_d5LXu_GL6OHwdPz_WR08zTQXIjNgMoZ15hTVkmeMTCoCQEEFUwKBCYrg2BASp4LY4XgABUxThJ5gQTWYi-ZdLmVo6Va-_qN_KdyVKvdhfNzRX4Tv2MUq4S1kpguYca5BsJZDCICkGUBEmLWRZe19u69NWGjlq71qzi-Ao6lkBxRRnXVKe1dCN7Y31dZpra1q23tal975JcdX8Te6KP-T5932kRjLP1pBgWWOf4Aub2Jsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438594339</pqid></control><display><type>article</type><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong</creator><contributor>Yu, Xin ; Xin Yu</contributor><creatorcontrib>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong ; Yu, Xin ; Xin Yu</creatorcontrib><description>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2<p<2∗,2<q<2∗,2∗=2N/N−2, andN≥3; λ>0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2020/4378691</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Inequality ; Mathematical analysis ; Partial differential equations ; Schrodinger equation</subject><ispartof>Advances in mathematical physics, 2020, Vol.2020 (2020), p.1-6</ispartof><rights>Copyright © 2020 Jinmei Fan et al.</rights><rights>Copyright © 2020 Jinmei Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</citedby><cites>FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</cites><orcidid>0000-0002-7037-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438594339/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438594339?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Yu, Xin</contributor><contributor>Xin Yu</contributor><creatorcontrib>Fan, Jinmei</creatorcontrib><creatorcontrib>Zhang, Qiongfen</creatorcontrib><creatorcontrib>Jiang, Yi-rong</creatorcontrib><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><title>Advances in mathematical physics</title><description>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2<p<2∗,2<q<2∗,2∗=2N/N−2, andN≥3; λ>0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</description><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Schrodinger equation</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0EFLwzAUB_AiCsrczbMUPOpc817SNkeZU4eCh-k5vKXJ1lGXmayIX8wv4BczW4cezSUh_Pjn5Z8kZyy7ZkyIIWSQDTkWZS7ZQXLC8rIYSIby8PcM2XHSD2GZxYVS5FKcJLdT81brhkKoNTXp1DXtpnarkFrnU0of61WVOpuOXLtuTJVO9cJ_f1X1am58On5vaYdPkyNLTTD9_d5LXu_GL6OHwdPz_WR08zTQXIjNgMoZ15hTVkmeMTCoCQEEFUwKBCYrg2BASp4LY4XgABUxThJ5gQTWYi-ZdLmVo6Va-_qN_KdyVKvdhfNzRX4Tv2MUq4S1kpguYca5BsJZDCICkGUBEmLWRZe19u69NWGjlq71qzi-Ao6lkBxRRnXVKe1dCN7Y31dZpra1q23tal975JcdX8Te6KP-T5932kRjLP1pBgWWOf4Aub2Jsw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fan, Jinmei</creator><creator>Zhang, Qiongfen</creator><creator>Jiang, Yi-rong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7037-1961</orcidid></search><sort><creationdate>2020</creationdate><title>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</title><author>Fan, Jinmei ; Zhang, Qiongfen ; Jiang, Yi-rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jinmei</creatorcontrib><creatorcontrib>Zhang, Qiongfen</creatorcontrib><creatorcontrib>Jiang, Yi-rong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jinmei</au><au>Zhang, Qiongfen</au><au>Jiang, Yi-rong</au><au>Yu, Xin</au><au>Xin Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical Solutions for a Kind of Coupled Schrödinger Equations</atitle><jtitle>Advances in mathematical physics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this paper, we are concerned with the following coupled Schrödinger equations −λ2Δu+a1xu=cxv+a2xup−2u+a3xu2∗−2u,x∈ℝN,−λ2Δv+b1xv=cxu+b2xvp−2v+b3xv2∗−2v,x∈ℝN, where 2<p<2∗,2<q<2∗,2∗=2N/N−2, andN≥3; λ>0 is a parameter; and a1,a2,a3,b1,b2,b3,c∈CℝN,ℝ and u,v∈H1ℝN. Under some suitable conditions that a10=infa1=0 or b10=infb1=0 and cx2≤ϑa1xb1x with ϑ∈0,1, the above coupled Schrödinger system possesses nontrivial solutions if λ∈0,λ0, where λ0 is related to a1,a2,a3,b1,b2,b3, and N.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4378691</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7037-1961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2020, Vol.2020 (2020), p.1-6 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1d5ff9a1c82b44c2a3ba93aa22987292 |
source | Publicly Available Content Database; Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Inequality Mathematical analysis Partial differential equations Schrodinger equation |
title | Semiclassical Solutions for a Kind of Coupled Schrödinger Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20Solutions%20for%20a%20Kind%20of%20Coupled%20Schr%C3%B6dinger%20Equations&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Fan,%20Jinmei&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2020/4378691&rft_dat=%3Cproquest_doaj_%3E2438594339%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-a8b4c36a0d94012e3ca3225a71953219de32e299465ef55422da14a93473a2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438594339&rft_id=info:pmid/&rfr_iscdi=true |