Loading…

High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation

The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-res...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-02, Vol.11 (1), p.1132-1132, Article 1132
Main Authors: Dian, Cyril, Pérez-Dorado, Inmaculada, Rivière, Frédéric, Asensio, Thomas, Legrand, Pierre, Ritzefeld, Markus, Shen, Mengjie, Cota, Ernesto, Meinnel, Thierry, Tate, Edward W., Giglione, Carmela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3
cites cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3
container_end_page 1132
container_issue 1
container_start_page 1132
container_title Nature communications
container_volume 11
creator Dian, Cyril
Pérez-Dorado, Inmaculada
Rivière, Frédéric
Asensio, Thomas
Legrand, Pierre
Ritzefeld, Markus
Shen, Mengjie
Cota, Ernesto
Meinnel, Thierry
Tate, Edward W.
Giglione, Carmela
description The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase. N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.
doi_str_mv 10.1038/s41467-020-14847-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00</doaj_id><sourcerecordid>2367851793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQgCMEotXSF-CALHGBQ8BjO4lzQaoq6FZawQXOluM4G68ce7GTSvsKfWqcTbv9OZCL4_E339ijybL3gL8ApvxrZMDKKscE58A4q3L6KjsnmEEOFaGvn_yfZRcx7nD6aA2csbfZGSUAwCmcZ3drs-3zoKO302i8Q9HJfez9GJHvUD8N0qGf-XAIJo7-YMcgXex0kFEj45BUxxxj7TQYJ0eNJBq06qUzcUD74Ac_GrdNhlGHmbBoc4hIuhZd2wM6aeWseZe96aSN-uJ-XWV_fnz_fbXON7-ub64uN7kqGR5zrhQnBa9bpjrNOs0LqWjTQl01TYk7ySkhbdFIAEZApSBvNOO1KgDXRaMVXWU3i7f1cif2wQwyHISXRhwDPmyFDKNRVgtoq7ZsilSOlwxo2ySD4g3Vda2gTQ1dZd8W135qBt0q7VKH7DPp8xNnerH1t6LCjPOj4PMi6F-krS83Yo5hUmBCAW4hsZ_uiwX_d9JxFIOJSlsrnfZTFISWNWNFUdCEfnyB7vwUUv-PVMULqOqZIgulgo8x6O50A8BinjKxTFm6RNrPUybmpA9Pn3xKeZipBNAFiOnIbXV4rP0f7T_int_x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367851793</pqid></control><display><type>article</type><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</creator><creatorcontrib>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</creatorcontrib><description>The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase. N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14847-3</identifier><identifier>PMID: 32111831</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/70 ; 38/79 ; 631/45/173 ; 631/45/2783 ; 631/45/475 ; 631/45/535/1266 ; 631/45/607/1172 ; 82/16 ; 82/58 ; 82/80 ; 82/83 ; Acylation ; Acyltransferases - chemistry ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Biochemical analysis ; Catalysis ; Catalytic Domain ; Coenzyme A - chemistry ; Coenzyme A - genetics ; Coenzyme A - metabolism ; Crystal structure ; Crystallography, X-Ray ; Glycine ; Glycine - metabolism ; High resolution ; Humanities and Social Sciences ; Humans ; Kinetics ; Life Sciences ; Lipids ; Lysine ; Lysine - metabolism ; multidisciplinary ; Mutation ; Myristic Acid - metabolism ; Myristoylation ; N-Myristoyltransferase ; Peptides ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Science ; Science (multidisciplinary) ; Structure-Activity Relationship ; Substrate Specificity ; Substrates ; Therapeutic targets</subject><ispartof>Nature communications, 2020-02, Vol.11 (1), p.1132-1132, Article 1132</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</citedby><cites>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</cites><orcidid>0000-0003-2213-5814 ; 0000-0002-4690-0683 ; 0000-0001-5642-8637 ; 0000-0003-2431-2255 ; 0000-0002-6349-3901 ; 0000-0002-2346-3265 ; 0000-0002-7475-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2367851793/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2367851793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02502311$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dian, Cyril</creatorcontrib><creatorcontrib>Pérez-Dorado, Inmaculada</creatorcontrib><creatorcontrib>Rivière, Frédéric</creatorcontrib><creatorcontrib>Asensio, Thomas</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Ritzefeld, Markus</creatorcontrib><creatorcontrib>Shen, Mengjie</creatorcontrib><creatorcontrib>Cota, Ernesto</creatorcontrib><creatorcontrib>Meinnel, Thierry</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Giglione, Carmela</creatorcontrib><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase. N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</description><subject>38/70</subject><subject>38/79</subject><subject>631/45/173</subject><subject>631/45/2783</subject><subject>631/45/475</subject><subject>631/45/535/1266</subject><subject>631/45/607/1172</subject><subject>82/16</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Acylation</subject><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Biochemical analysis</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Coenzyme A - chemistry</subject><subject>Coenzyme A - genetics</subject><subject>Coenzyme A - metabolism</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>High resolution</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Myristic Acid - metabolism</subject><subject>Myristoylation</subject><subject>N-Myristoyltransferase</subject><subject>Peptides</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQgCMEotXSF-CALHGBQ8BjO4lzQaoq6FZawQXOluM4G68ce7GTSvsKfWqcTbv9OZCL4_E339ijybL3gL8ApvxrZMDKKscE58A4q3L6KjsnmEEOFaGvn_yfZRcx7nD6aA2csbfZGSUAwCmcZ3drs-3zoKO302i8Q9HJfez9GJHvUD8N0qGf-XAIJo7-YMcgXex0kFEj45BUxxxj7TQYJ0eNJBq06qUzcUD74Ac_GrdNhlGHmbBoc4hIuhZd2wM6aeWseZe96aSN-uJ-XWV_fnz_fbXON7-ub64uN7kqGR5zrhQnBa9bpjrNOs0LqWjTQl01TYk7ySkhbdFIAEZApSBvNOO1KgDXRaMVXWU3i7f1cif2wQwyHISXRhwDPmyFDKNRVgtoq7ZsilSOlwxo2ySD4g3Vda2gTQ1dZd8W135qBt0q7VKH7DPp8xNnerH1t6LCjPOj4PMi6F-krS83Yo5hUmBCAW4hsZ_uiwX_d9JxFIOJSlsrnfZTFISWNWNFUdCEfnyB7vwUUv-PVMULqOqZIgulgo8x6O50A8BinjKxTFm6RNrPUybmpA9Pn3xKeZipBNAFiOnIbXV4rP0f7T_int_x</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Dian, Cyril</creator><creator>Pérez-Dorado, Inmaculada</creator><creator>Rivière, Frédéric</creator><creator>Asensio, Thomas</creator><creator>Legrand, Pierre</creator><creator>Ritzefeld, Markus</creator><creator>Shen, Mengjie</creator><creator>Cota, Ernesto</creator><creator>Meinnel, Thierry</creator><creator>Tate, Edward W.</creator><creator>Giglione, Carmela</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-4690-0683</orcidid><orcidid>https://orcid.org/0000-0001-5642-8637</orcidid><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000-0002-6349-3901</orcidid><orcidid>https://orcid.org/0000-0002-2346-3265</orcidid><orcidid>https://orcid.org/0000-0002-7475-1558</orcidid></search><sort><creationdate>20200228</creationdate><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><author>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/70</topic><topic>38/79</topic><topic>631/45/173</topic><topic>631/45/2783</topic><topic>631/45/475</topic><topic>631/45/535/1266</topic><topic>631/45/607/1172</topic><topic>82/16</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Acylation</topic><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Biochemical analysis</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Coenzyme A - chemistry</topic><topic>Coenzyme A - genetics</topic><topic>Coenzyme A - metabolism</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>High resolution</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Myristic Acid - metabolism</topic><topic>Myristoylation</topic><topic>N-Myristoyltransferase</topic><topic>Peptides</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dian, Cyril</creatorcontrib><creatorcontrib>Pérez-Dorado, Inmaculada</creatorcontrib><creatorcontrib>Rivière, Frédéric</creatorcontrib><creatorcontrib>Asensio, Thomas</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Ritzefeld, Markus</creatorcontrib><creatorcontrib>Shen, Mengjie</creatorcontrib><creatorcontrib>Cota, Ernesto</creatorcontrib><creatorcontrib>Meinnel, Thierry</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Giglione, Carmela</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dian, Cyril</au><au>Pérez-Dorado, Inmaculada</au><au>Rivière, Frédéric</au><au>Asensio, Thomas</au><au>Legrand, Pierre</au><au>Ritzefeld, Markus</au><au>Shen, Mengjie</au><au>Cota, Ernesto</au><au>Meinnel, Thierry</au><au>Tate, Edward W.</au><au>Giglione, Carmela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1132</spage><epage>1132</epage><pages>1132-1132</pages><artnum>1132</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase. N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32111831</pmid><doi>10.1038/s41467-020-14847-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-4690-0683</orcidid><orcidid>https://orcid.org/0000-0001-5642-8637</orcidid><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000-0002-6349-3901</orcidid><orcidid>https://orcid.org/0000-0002-2346-3265</orcidid><orcidid>https://orcid.org/0000-0002-7475-1558</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-02, Vol.11 (1), p.1132-1132, Article 1132
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00
source PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 38/70
38/79
631/45/173
631/45/2783
631/45/475
631/45/535/1266
631/45/607/1172
82/16
82/58
82/80
82/83
Acylation
Acyltransferases - chemistry
Acyltransferases - genetics
Acyltransferases - metabolism
Biochemical analysis
Catalysis
Catalytic Domain
Coenzyme A - chemistry
Coenzyme A - genetics
Coenzyme A - metabolism
Crystal structure
Crystallography, X-Ray
Glycine
Glycine - metabolism
High resolution
Humanities and Social Sciences
Humans
Kinetics
Life Sciences
Lipids
Lysine
Lysine - metabolism
multidisciplinary
Mutation
Myristic Acid - metabolism
Myristoylation
N-Myristoyltransferase
Peptides
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Science
Science (multidisciplinary)
Structure-Activity Relationship
Substrate Specificity
Substrates
Therapeutic targets
title High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20snapshots%20of%20human%20N-myristoyltransferase%20in%20action%20illuminate%20a%20mechanism%20promoting%20N-terminal%20Lys%20and%20Gly%20myristoylation&rft.jtitle=Nature%20communications&rft.au=Dian,%20Cyril&rft.date=2020-02-28&rft.volume=11&rft.issue=1&rft.spage=1132&rft.epage=1132&rft.pages=1132-1132&rft.artnum=1132&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14847-3&rft_dat=%3Cproquest_doaj_%3E2367851793%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2367851793&rft_id=info:pmid/32111831&rfr_iscdi=true