Loading…
High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation
The promising drug target N -myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-res...
Saved in:
Published in: | Nature communications 2020-02, Vol.11 (1), p.1132-1132, Article 1132 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3 |
container_end_page | 1132 |
container_issue | 1 |
container_start_page | 1132 |
container_title | Nature communications |
container_volume | 11 |
creator | Dian, Cyril Pérez-Dorado, Inmaculada Rivière, Frédéric Asensio, Thomas Legrand, Pierre Ritzefeld, Markus Shen, Mengjie Cota, Ernesto Meinnel, Thierry Tate, Edward W. Giglione, Carmela |
description | The promising drug target
N
-myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase.
N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines. |
doi_str_mv | 10.1038/s41467-020-14847-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00</doaj_id><sourcerecordid>2367851793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQgCMEotXSF-CALHGBQ8BjO4lzQaoq6FZawQXOluM4G68ce7GTSvsKfWqcTbv9OZCL4_E339ijybL3gL8ApvxrZMDKKscE58A4q3L6KjsnmEEOFaGvn_yfZRcx7nD6aA2csbfZGSUAwCmcZ3drs-3zoKO302i8Q9HJfez9GJHvUD8N0qGf-XAIJo7-YMcgXex0kFEj45BUxxxj7TQYJ0eNJBq06qUzcUD74Ac_GrdNhlGHmbBoc4hIuhZd2wM6aeWseZe96aSN-uJ-XWV_fnz_fbXON7-ub64uN7kqGR5zrhQnBa9bpjrNOs0LqWjTQl01TYk7ySkhbdFIAEZApSBvNOO1KgDXRaMVXWU3i7f1cif2wQwyHISXRhwDPmyFDKNRVgtoq7ZsilSOlwxo2ySD4g3Vda2gTQ1dZd8W135qBt0q7VKH7DPp8xNnerH1t6LCjPOj4PMi6F-krS83Yo5hUmBCAW4hsZ_uiwX_d9JxFIOJSlsrnfZTFISWNWNFUdCEfnyB7vwUUv-PVMULqOqZIgulgo8x6O50A8BinjKxTFm6RNrPUybmpA9Pn3xKeZipBNAFiOnIbXV4rP0f7T_int_x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367851793</pqid></control><display><type>article</type><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</creator><creatorcontrib>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</creatorcontrib><description>The promising drug target
N
-myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase.
N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-14847-3</identifier><identifier>PMID: 32111831</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/70 ; 38/79 ; 631/45/173 ; 631/45/2783 ; 631/45/475 ; 631/45/535/1266 ; 631/45/607/1172 ; 82/16 ; 82/58 ; 82/80 ; 82/83 ; Acylation ; Acyltransferases - chemistry ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Biochemical analysis ; Catalysis ; Catalytic Domain ; Coenzyme A - chemistry ; Coenzyme A - genetics ; Coenzyme A - metabolism ; Crystal structure ; Crystallography, X-Ray ; Glycine ; Glycine - metabolism ; High resolution ; Humanities and Social Sciences ; Humans ; Kinetics ; Life Sciences ; Lipids ; Lysine ; Lysine - metabolism ; multidisciplinary ; Mutation ; Myristic Acid - metabolism ; Myristoylation ; N-Myristoyltransferase ; Peptides ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Science ; Science (multidisciplinary) ; Structure-Activity Relationship ; Substrate Specificity ; Substrates ; Therapeutic targets</subject><ispartof>Nature communications, 2020-02, Vol.11 (1), p.1132-1132, Article 1132</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</citedby><cites>FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</cites><orcidid>0000-0003-2213-5814 ; 0000-0002-4690-0683 ; 0000-0001-5642-8637 ; 0000-0003-2431-2255 ; 0000-0002-6349-3901 ; 0000-0002-2346-3265 ; 0000-0002-7475-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2367851793/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2367851793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02502311$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dian, Cyril</creatorcontrib><creatorcontrib>Pérez-Dorado, Inmaculada</creatorcontrib><creatorcontrib>Rivière, Frédéric</creatorcontrib><creatorcontrib>Asensio, Thomas</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Ritzefeld, Markus</creatorcontrib><creatorcontrib>Shen, Mengjie</creatorcontrib><creatorcontrib>Cota, Ernesto</creatorcontrib><creatorcontrib>Meinnel, Thierry</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Giglione, Carmela</creatorcontrib><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The promising drug target
N
-myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase.
N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</description><subject>38/70</subject><subject>38/79</subject><subject>631/45/173</subject><subject>631/45/2783</subject><subject>631/45/475</subject><subject>631/45/535/1266</subject><subject>631/45/607/1172</subject><subject>82/16</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Acylation</subject><subject>Acyltransferases - chemistry</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Biochemical analysis</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Coenzyme A - chemistry</subject><subject>Coenzyme A - genetics</subject><subject>Coenzyme A - metabolism</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>High resolution</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Myristic Acid - metabolism</subject><subject>Myristoylation</subject><subject>N-Myristoyltransferase</subject><subject>Peptides</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQgCMEotXSF-CALHGBQ8BjO4lzQaoq6FZawQXOluM4G68ce7GTSvsKfWqcTbv9OZCL4_E339ijybL3gL8ApvxrZMDKKscE58A4q3L6KjsnmEEOFaGvn_yfZRcx7nD6aA2csbfZGSUAwCmcZ3drs-3zoKO302i8Q9HJfez9GJHvUD8N0qGf-XAIJo7-YMcgXex0kFEj45BUxxxj7TQYJ0eNJBq06qUzcUD74Ac_GrdNhlGHmbBoc4hIuhZd2wM6aeWseZe96aSN-uJ-XWV_fnz_fbXON7-ub64uN7kqGR5zrhQnBa9bpjrNOs0LqWjTQl01TYk7ySkhbdFIAEZApSBvNOO1KgDXRaMVXWU3i7f1cif2wQwyHISXRhwDPmyFDKNRVgtoq7ZsilSOlwxo2ySD4g3Vda2gTQ1dZd8W135qBt0q7VKH7DPp8xNnerH1t6LCjPOj4PMi6F-krS83Yo5hUmBCAW4hsZ_uiwX_d9JxFIOJSlsrnfZTFISWNWNFUdCEfnyB7vwUUv-PVMULqOqZIgulgo8x6O50A8BinjKxTFm6RNrPUybmpA9Pn3xKeZipBNAFiOnIbXV4rP0f7T_int_x</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Dian, Cyril</creator><creator>Pérez-Dorado, Inmaculada</creator><creator>Rivière, Frédéric</creator><creator>Asensio, Thomas</creator><creator>Legrand, Pierre</creator><creator>Ritzefeld, Markus</creator><creator>Shen, Mengjie</creator><creator>Cota, Ernesto</creator><creator>Meinnel, Thierry</creator><creator>Tate, Edward W.</creator><creator>Giglione, Carmela</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-4690-0683</orcidid><orcidid>https://orcid.org/0000-0001-5642-8637</orcidid><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000-0002-6349-3901</orcidid><orcidid>https://orcid.org/0000-0002-2346-3265</orcidid><orcidid>https://orcid.org/0000-0002-7475-1558</orcidid></search><sort><creationdate>20200228</creationdate><title>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</title><author>Dian, Cyril ; Pérez-Dorado, Inmaculada ; Rivière, Frédéric ; Asensio, Thomas ; Legrand, Pierre ; Ritzefeld, Markus ; Shen, Mengjie ; Cota, Ernesto ; Meinnel, Thierry ; Tate, Edward W. ; Giglione, Carmela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/70</topic><topic>38/79</topic><topic>631/45/173</topic><topic>631/45/2783</topic><topic>631/45/475</topic><topic>631/45/535/1266</topic><topic>631/45/607/1172</topic><topic>82/16</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Acylation</topic><topic>Acyltransferases - chemistry</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Biochemical analysis</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Coenzyme A - chemistry</topic><topic>Coenzyme A - genetics</topic><topic>Coenzyme A - metabolism</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>High resolution</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Myristic Acid - metabolism</topic><topic>Myristoylation</topic><topic>N-Myristoyltransferase</topic><topic>Peptides</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dian, Cyril</creatorcontrib><creatorcontrib>Pérez-Dorado, Inmaculada</creatorcontrib><creatorcontrib>Rivière, Frédéric</creatorcontrib><creatorcontrib>Asensio, Thomas</creatorcontrib><creatorcontrib>Legrand, Pierre</creatorcontrib><creatorcontrib>Ritzefeld, Markus</creatorcontrib><creatorcontrib>Shen, Mengjie</creatorcontrib><creatorcontrib>Cota, Ernesto</creatorcontrib><creatorcontrib>Meinnel, Thierry</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Giglione, Carmela</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dian, Cyril</au><au>Pérez-Dorado, Inmaculada</au><au>Rivière, Frédéric</au><au>Asensio, Thomas</au><au>Legrand, Pierre</au><au>Ritzefeld, Markus</au><au>Shen, Mengjie</au><au>Cota, Ernesto</au><au>Meinnel, Thierry</au><au>Tate, Edward W.</au><au>Giglione, Carmela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1132</spage><epage>1132</epage><pages>1132-1132</pages><artnum>1132</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The promising drug target
N
-myristoyltransferase (NMT) catalyses an essential protein modification thought to occur exclusively at N-terminal glycines (Gly). Here, we present high-resolution human NMT1 structures co-crystallised with reactive cognate lipid and peptide substrates, revealing high-resolution snapshots of the entire catalytic mechanism from the initial to final reaction states. Structural comparisons, together with biochemical analysis, provide unforeseen details about how NMT1 reaches a catalytically competent conformation in which the reactive groups are brought into close proximity to enable catalysis. We demonstrate that this mechanism further supports efficient and unprecedented myristoylation of an N-terminal lysine side chain, providing evidence that NMT acts both as N-terminal-lysine and glycine myristoyltransferase.
N-terminal glycine myristoyl transferases (NMTs) catalyse the myristoylation of eukaryotic proteins. Here, the authors provide insights into the catalytic mechanism of NMTs by determining the crystal structures of human NMT1 in complex with reactive cognate lipid and peptide substrates and further show that NMT1 also catalyses the acylation of N-terminal lysines.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32111831</pmid><doi>10.1038/s41467-020-14847-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-4690-0683</orcidid><orcidid>https://orcid.org/0000-0001-5642-8637</orcidid><orcidid>https://orcid.org/0000-0003-2431-2255</orcidid><orcidid>https://orcid.org/0000-0002-6349-3901</orcidid><orcidid>https://orcid.org/0000-0002-2346-3265</orcidid><orcidid>https://orcid.org/0000-0002-7475-1558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-02, Vol.11 (1), p.1132-1132, Article 1132 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1d7d6b525886413db95bc8b3e99c1d00 |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38/70 38/79 631/45/173 631/45/2783 631/45/475 631/45/535/1266 631/45/607/1172 82/16 82/58 82/80 82/83 Acylation Acyltransferases - chemistry Acyltransferases - genetics Acyltransferases - metabolism Biochemical analysis Catalysis Catalytic Domain Coenzyme A - chemistry Coenzyme A - genetics Coenzyme A - metabolism Crystal structure Crystallography, X-Ray Glycine Glycine - metabolism High resolution Humanities and Social Sciences Humans Kinetics Life Sciences Lipids Lysine Lysine - metabolism multidisciplinary Mutation Myristic Acid - metabolism Myristoylation N-Myristoyltransferase Peptides Protein Structure, Secondary Protein Structure, Tertiary Proteins Science Science (multidisciplinary) Structure-Activity Relationship Substrate Specificity Substrates Therapeutic targets |
title | High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20snapshots%20of%20human%20N-myristoyltransferase%20in%20action%20illuminate%20a%20mechanism%20promoting%20N-terminal%20Lys%20and%20Gly%20myristoylation&rft.jtitle=Nature%20communications&rft.au=Dian,%20Cyril&rft.date=2020-02-28&rft.volume=11&rft.issue=1&rft.spage=1132&rft.epage=1132&rft.pages=1132-1132&rft.artnum=1132&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-14847-3&rft_dat=%3Cproquest_doaj_%3E2367851793%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c640t-8cc82589d4cfe4fe85ac3bd197bb60fa8322d5ba11421c7bb8be489c51095bec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2367851793&rft_id=info:pmid/32111831&rfr_iscdi=true |