Loading…
Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine
Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based phar...
Saved in:
Published in: | CPT: pharmacometrics and systems pharmacology 2019-06, Vol.8 (6), p.396-406 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993 |
---|---|
cites | cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993 |
container_end_page | 406 |
container_issue | 6 |
container_start_page | 396 |
container_title | CPT: pharmacometrics and systems pharmacology |
container_volume | 8 |
creator | Nishiyama, Kotaro Toshimoto, Kota Lee, Wooin Ishiguro, Naoki Bister, Bojan Sugiyama, Yuichi |
description | Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values. |
doi_str_mv | 10.1002/psp4.12398 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d993496b36543679193b295682659e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d993496b36543679193b295682659e8</doaj_id><sourcerecordid>2265757719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</originalsourceid><addsrcrecordid>eNp9kk1uEzEUgEcIRKvSDQdAltggpBT_jGfsDVIb8ROpEQHK2nLsN4nDjB3smVbZ9QhIHIGb9SQ4SalaFnhj-_nz956tVxTPCT4hGNM367QuTwhlUjwqDimp2EgwXD2-tz4ojlNa4TzqEhOJnxYHDAtKCGOHxe_ZcpNcaMPCGd22m5vrn2c6gUWzpY6dNuG789A7g6bBQuv8Ap163eYrCTUhos-D9r3rde8uAc0iWGd6FzwKDfoCGUQXUfu0DrGHeHP9a5oB3Wf7xOeA3rEJnUF_BeDRFPrs7JxH2ls0dl1ObHP6Z8WTRrcJjm_no-Lb-3cX44-j808fJuPT85HhAouR5pgQWVttLLeyFpYaiyvMLZdzTI1pgNmSYrBYAOfCNITlLedM10aClOyomOy9NuiVWkfX6bhRQTu1C4S4UDrmv2hBEZv5UlZzVvGSVbUkks2p5JWgFZcgsuvt3rUe5h1YA76Pun0gfXji3VItwqWqKlILWmbBq1tBDD8GSL3qXDLQttpDGJKiRNScYlLVGX35D7oKQ8y_n6lcTs3rmmxf93pPmRhSitDcFUOw2raS2raS2rVShl_cL_8O_ds4GSB74Mq1sPmPSs2-zsq99A8LC9gV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265757719</pqid></control><display><type>article</type><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</creator><creatorcontrib>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</creatorcontrib><description>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</description><identifier>ISSN: 2163-8306</identifier><identifier>EISSN: 2163-8306</identifier><identifier>DOI: 10.1002/psp4.12398</identifier><identifier>PMID: 30821133</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Antidiabetics ; Blood ; Drug dosages ; Liver ; Pharmacokinetics ; Physiology ; Proteins ; Urine</subject><ispartof>CPT: pharmacometrics and systems pharmacology, 2019-06, Vol.8 (6), p.396-406</ispartof><rights>2019 The Authors published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2019 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</citedby><cites>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2265757719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2265757719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,11545,25736,27907,27908,36995,36996,44573,46035,46459,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30821133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishiyama, Kotaro</creatorcontrib><creatorcontrib>Toshimoto, Kota</creatorcontrib><creatorcontrib>Lee, Wooin</creatorcontrib><creatorcontrib>Ishiguro, Naoki</creatorcontrib><creatorcontrib>Bister, Bojan</creatorcontrib><creatorcontrib>Sugiyama, Yuichi</creatorcontrib><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><title>CPT: pharmacometrics and systems pharmacology</title><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><description>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</description><subject>Antidiabetics</subject><subject>Blood</subject><subject>Drug dosages</subject><subject>Liver</subject><subject>Pharmacokinetics</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Urine</subject><issn>2163-8306</issn><issn>2163-8306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1uEzEUgEcIRKvSDQdAltggpBT_jGfsDVIb8ROpEQHK2nLsN4nDjB3smVbZ9QhIHIGb9SQ4SalaFnhj-_nz956tVxTPCT4hGNM367QuTwhlUjwqDimp2EgwXD2-tz4ojlNa4TzqEhOJnxYHDAtKCGOHxe_ZcpNcaMPCGd22m5vrn2c6gUWzpY6dNuG789A7g6bBQuv8Ap163eYrCTUhos-D9r3rde8uAc0iWGd6FzwKDfoCGUQXUfu0DrGHeHP9a5oB3Wf7xOeA3rEJnUF_BeDRFPrs7JxH2ls0dl1ObHP6Z8WTRrcJjm_no-Lb-3cX44-j808fJuPT85HhAouR5pgQWVttLLeyFpYaiyvMLZdzTI1pgNmSYrBYAOfCNITlLedM10aClOyomOy9NuiVWkfX6bhRQTu1C4S4UDrmv2hBEZv5UlZzVvGSVbUkks2p5JWgFZcgsuvt3rUe5h1YA76Pun0gfXji3VItwqWqKlILWmbBq1tBDD8GSL3qXDLQttpDGJKiRNScYlLVGX35D7oKQ8y_n6lcTs3rmmxf93pPmRhSitDcFUOw2raS2raS2rVShl_cL_8O_ds4GSB74Mq1sPmPSs2-zsq99A8LC9gV</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Nishiyama, Kotaro</creator><creator>Toshimoto, Kota</creator><creator>Lee, Wooin</creator><creator>Ishiguro, Naoki</creator><creator>Bister, Bojan</creator><creator>Sugiyama, Yuichi</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201906</creationdate><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><author>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antidiabetics</topic><topic>Blood</topic><topic>Drug dosages</topic><topic>Liver</topic><topic>Pharmacokinetics</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishiyama, Kotaro</creatorcontrib><creatorcontrib>Toshimoto, Kota</creatorcontrib><creatorcontrib>Lee, Wooin</creatorcontrib><creatorcontrib>Ishiguro, Naoki</creatorcontrib><creatorcontrib>Bister, Bojan</creatorcontrib><creatorcontrib>Sugiyama, Yuichi</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishiyama, Kotaro</au><au>Toshimoto, Kota</au><au>Lee, Wooin</au><au>Ishiguro, Naoki</au><au>Bister, Bojan</au><au>Sugiyama, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</atitle><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>8</volume><issue>6</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>2163-8306</issn><eissn>2163-8306</eissn><abstract>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>30821133</pmid><doi>10.1002/psp4.12398</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2163-8306 |
ispartof | CPT: pharmacometrics and systems pharmacology, 2019-06, Vol.8 (6), p.396-406 |
issn | 2163-8306 2163-8306 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1d993496b36543679193b295682659e8 |
source | Open Access: PubMed Central; Publicly Available Content Database; Wiley Open Access |
subjects | Antidiabetics Blood Drug dosages Liver Pharmacokinetics Physiology Proteins Urine |
title | Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiologically%E2%80%90Based%20Pharmacokinetic%20Modeling%20Analysis%20for%20Quantitative%20Prediction%20of%20Renal%20Transporter%E2%80%93Mediated%20Interactions%20Between%20Metformin%20and%20Cimetidine&rft.jtitle=CPT:%20pharmacometrics%20and%20systems%20pharmacology&rft.au=Nishiyama,%20Kotaro&rft.date=2019-06&rft.volume=8&rft.issue=6&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=2163-8306&rft.eissn=2163-8306&rft_id=info:doi/10.1002/psp4.12398&rft_dat=%3Cproquest_doaj_%3E2265757719%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265757719&rft_id=info:pmid/30821133&rfr_iscdi=true |