Loading…

Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine

Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based phar...

Full description

Saved in:
Bibliographic Details
Published in:CPT: pharmacometrics and systems pharmacology 2019-06, Vol.8 (6), p.396-406
Main Authors: Nishiyama, Kotaro, Toshimoto, Kota, Lee, Wooin, Ishiguro, Naoki, Bister, Bojan, Sugiyama, Yuichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993
cites cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993
container_end_page 406
container_issue 6
container_start_page 396
container_title CPT: pharmacometrics and systems pharmacology
container_volume 8
creator Nishiyama, Kotaro
Toshimoto, Kota
Lee, Wooin
Ishiguro, Naoki
Bister, Bojan
Sugiyama, Yuichi
description Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.
doi_str_mv 10.1002/psp4.12398
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1d993496b36543679193b295682659e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1d993496b36543679193b295682659e8</doaj_id><sourcerecordid>2265757719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</originalsourceid><addsrcrecordid>eNp9kk1uEzEUgEcIRKvSDQdAltggpBT_jGfsDVIb8ROpEQHK2nLsN4nDjB3smVbZ9QhIHIGb9SQ4SalaFnhj-_nz956tVxTPCT4hGNM367QuTwhlUjwqDimp2EgwXD2-tz4ojlNa4TzqEhOJnxYHDAtKCGOHxe_ZcpNcaMPCGd22m5vrn2c6gUWzpY6dNuG789A7g6bBQuv8Ap163eYrCTUhos-D9r3rde8uAc0iWGd6FzwKDfoCGUQXUfu0DrGHeHP9a5oB3Wf7xOeA3rEJnUF_BeDRFPrs7JxH2ls0dl1ObHP6Z8WTRrcJjm_no-Lb-3cX44-j808fJuPT85HhAouR5pgQWVttLLeyFpYaiyvMLZdzTI1pgNmSYrBYAOfCNITlLedM10aClOyomOy9NuiVWkfX6bhRQTu1C4S4UDrmv2hBEZv5UlZzVvGSVbUkks2p5JWgFZcgsuvt3rUe5h1YA76Pun0gfXji3VItwqWqKlILWmbBq1tBDD8GSL3qXDLQttpDGJKiRNScYlLVGX35D7oKQ8y_n6lcTs3rmmxf93pPmRhSitDcFUOw2raS2raS2rVShl_cL_8O_ds4GSB74Mq1sPmPSs2-zsq99A8LC9gV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265757719</pqid></control><display><type>article</type><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</creator><creatorcontrib>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</creatorcontrib><description>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</description><identifier>ISSN: 2163-8306</identifier><identifier>EISSN: 2163-8306</identifier><identifier>DOI: 10.1002/psp4.12398</identifier><identifier>PMID: 30821133</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Antidiabetics ; Blood ; Drug dosages ; Liver ; Pharmacokinetics ; Physiology ; Proteins ; Urine</subject><ispartof>CPT: pharmacometrics and systems pharmacology, 2019-06, Vol.8 (6), p.396-406</ispartof><rights>2019 The Authors published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2019 The Authors CPT: Pharmacometrics &amp; Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</citedby><cites>FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2265757719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2265757719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,11545,25736,27907,27908,36995,36996,44573,46035,46459,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30821133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishiyama, Kotaro</creatorcontrib><creatorcontrib>Toshimoto, Kota</creatorcontrib><creatorcontrib>Lee, Wooin</creatorcontrib><creatorcontrib>Ishiguro, Naoki</creatorcontrib><creatorcontrib>Bister, Bojan</creatorcontrib><creatorcontrib>Sugiyama, Yuichi</creatorcontrib><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><title>CPT: pharmacometrics and systems pharmacology</title><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><description>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</description><subject>Antidiabetics</subject><subject>Blood</subject><subject>Drug dosages</subject><subject>Liver</subject><subject>Pharmacokinetics</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Urine</subject><issn>2163-8306</issn><issn>2163-8306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1uEzEUgEcIRKvSDQdAltggpBT_jGfsDVIb8ROpEQHK2nLsN4nDjB3smVbZ9QhIHIGb9SQ4SalaFnhj-_nz956tVxTPCT4hGNM367QuTwhlUjwqDimp2EgwXD2-tz4ojlNa4TzqEhOJnxYHDAtKCGOHxe_ZcpNcaMPCGd22m5vrn2c6gUWzpY6dNuG789A7g6bBQuv8Ap163eYrCTUhos-D9r3rde8uAc0iWGd6FzwKDfoCGUQXUfu0DrGHeHP9a5oB3Wf7xOeA3rEJnUF_BeDRFPrs7JxH2ls0dl1ObHP6Z8WTRrcJjm_no-Lb-3cX44-j808fJuPT85HhAouR5pgQWVttLLeyFpYaiyvMLZdzTI1pgNmSYrBYAOfCNITlLedM10aClOyomOy9NuiVWkfX6bhRQTu1C4S4UDrmv2hBEZv5UlZzVvGSVbUkks2p5JWgFZcgsuvt3rUe5h1YA76Pun0gfXji3VItwqWqKlILWmbBq1tBDD8GSL3qXDLQttpDGJKiRNScYlLVGX35D7oKQ8y_n6lcTs3rmmxf93pPmRhSitDcFUOw2raS2raS2rVShl_cL_8O_ds4GSB74Mq1sPmPSs2-zsq99A8LC9gV</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Nishiyama, Kotaro</creator><creator>Toshimoto, Kota</creator><creator>Lee, Wooin</creator><creator>Ishiguro, Naoki</creator><creator>Bister, Bojan</creator><creator>Sugiyama, Yuichi</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201906</creationdate><title>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</title><author>Nishiyama, Kotaro ; Toshimoto, Kota ; Lee, Wooin ; Ishiguro, Naoki ; Bister, Bojan ; Sugiyama, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antidiabetics</topic><topic>Blood</topic><topic>Drug dosages</topic><topic>Liver</topic><topic>Pharmacokinetics</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishiyama, Kotaro</creatorcontrib><creatorcontrib>Toshimoto, Kota</creatorcontrib><creatorcontrib>Lee, Wooin</creatorcontrib><creatorcontrib>Ishiguro, Naoki</creatorcontrib><creatorcontrib>Bister, Bojan</creatorcontrib><creatorcontrib>Sugiyama, Yuichi</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishiyama, Kotaro</au><au>Toshimoto, Kota</au><au>Lee, Wooin</au><au>Ishiguro, Naoki</au><au>Bister, Bojan</au><au>Sugiyama, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine</atitle><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>8</volume><issue>6</issue><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>2163-8306</issn><eissn>2163-8306</eissn><abstract>Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30821133</pmid><doi>10.1002/psp4.12398</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2163-8306
ispartof CPT: pharmacometrics and systems pharmacology, 2019-06, Vol.8 (6), p.396-406
issn 2163-8306
2163-8306
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1d993496b36543679193b295682659e8
source Open Access: PubMed Central; Publicly Available Content Database; Wiley Open Access
subjects Antidiabetics
Blood
Drug dosages
Liver
Pharmacokinetics
Physiology
Proteins
Urine
title Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiologically%E2%80%90Based%20Pharmacokinetic%20Modeling%20Analysis%20for%20Quantitative%20Prediction%20of%20Renal%20Transporter%E2%80%93Mediated%20Interactions%20Between%20Metformin%20and%20Cimetidine&rft.jtitle=CPT:%20pharmacometrics%20and%20systems%20pharmacology&rft.au=Nishiyama,%20Kotaro&rft.date=2019-06&rft.volume=8&rft.issue=6&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=2163-8306&rft.eissn=2163-8306&rft_id=info:doi/10.1002/psp4.12398&rft_dat=%3Cproquest_doaj_%3E2265757719%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5808-a501197dacd5d978d2cd0605d59b02ccfe3d420ed08e558cf13420553a7c9e993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265757719&rft_id=info:pmid/30821133&rfr_iscdi=true