Loading…
Real-Time Knock Characterization Using Adaptive Filters and Power Estimators
We combined adaptive filters associated with power estimators to characterize the knock signal, obtained from a knock sensor, in an internal combustion engine. The filters were implemented using the automotive model-based design methodology, and the resulting software was embedded into hardware for...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.84371-84384 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513 |
container_end_page | 84384 |
container_issue | |
container_start_page | 84371 |
container_title | IEEE access |
container_volume | 8 |
creator | Silva, Rafael Luiz Da Rossetti, Pedro Santos, Joao Pedro F. Lagana, Armando Antonio Maria Colon, Diego Justo, Joao Francisco |
description | We combined adaptive filters associated with power estimators to characterize the knock signal, obtained from a knock sensor, in an internal combustion engine. The filters were implemented using the automotive model-based design methodology, and the resulting software was embedded into hardware for a real-time evaluation of the proposed solution. The knock signals could be qualitatively identified in real-time, and thus have the potential to aid in the management of flexible-fuel engines. This approach has an extensive range of applications within the automotive industry, since it can be implemented within any model-based control strategy. For example, this methodology can be applied in commercial ECUs, currently used in most vehicles for knock detection, by simply eliminating an internal, dedicated, integrated circuit for knock identification, or by serving as a redundancy device (i.e: for safety purposes). Finally, this methodology can identify the knock signal, obtained from a knock sensor, just by using an algorithm implemented in the ECU's processor, which we show is identifiable in real-time. |
doi_str_mv | 10.1109/ACCESS.2020.2991664 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dbc697a2c22477b84a2eea980858b0e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9083981</ieee_id><doaj_id>oai_doaj_org_article_1dbc697a2c22477b84a2eea980858b0e</doaj_id><sourcerecordid>2454092860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaKgqF_gS8HnrpNrk8elrBdcULw8h2mSata1WZOq6NdbrYjzMsOZOecMnKI4IjAjBPTJvGkWt7czChRmVGsiJd8q9iiRumKCye1_825xmPMKxlIjJOq9YnnjcV3dhWdfXvbRPpXNIya0g0_hE4cQ-_I-h_6hnDvcDOHNl6dhPS5zib0rr-O7T-UiD-EZh5jyQbHT4Tr7w9--X9yfLu6a82p5dXbRzJeV5aCGSrcdJVx46JC0LSjqnHCC16xTsm6d5Fo7IRlaSoCyWnMLCLzT0DJktSBsv7iYdF3Eldmk0T59mIjB_AAxPRhMQ7Brb4hrrdQ1Ukspr-tWcaTeo1aghGrBj1rHk9YmxZdXnweziq-pH983lAsOmioJ4xWbrmyKOSff_bkSMN8pmCkF852C-U1hZB1NrOC9_2NoUEwrwr4AN-qBow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092860</pqid></control><display><type>article</type><title>Real-Time Knock Characterization Using Adaptive Filters and Power Estimators</title><source>IEEE Xplore Open Access Journals</source><creator>Silva, Rafael Luiz Da ; Rossetti, Pedro ; Santos, Joao Pedro F. ; Lagana, Armando Antonio Maria ; Colon, Diego ; Justo, Joao Francisco</creator><creatorcontrib>Silva, Rafael Luiz Da ; Rossetti, Pedro ; Santos, Joao Pedro F. ; Lagana, Armando Antonio Maria ; Colon, Diego ; Justo, Joao Francisco</creatorcontrib><description>We combined adaptive filters associated with power estimators to characterize the knock signal, obtained from a knock sensor, in an internal combustion engine. The filters were implemented using the automotive model-based design methodology, and the resulting software was embedded into hardware for a real-time evaluation of the proposed solution. The knock signals could be qualitatively identified in real-time, and thus have the potential to aid in the management of flexible-fuel engines. This approach has an extensive range of applications within the automotive industry, since it can be implemented within any model-based control strategy. For example, this methodology can be applied in commercial ECUs, currently used in most vehicles for knock detection, by simply eliminating an internal, dedicated, integrated circuit for knock identification, or by serving as a redundancy device (i.e: for safety purposes). Finally, this methodology can identify the knock signal, obtained from a knock sensor, just by using an algorithm implemented in the ECU's processor, which we show is identifiable in real-time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2991664</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Automobile industry ; automotive electronics ; Automotive engines ; Convergence ; Cost function ; Engines ; Estimators ; Fuels ; Integrated circuits ; Internal combustion engines ; Knock ; knock sensor ; Microprocessors ; model-based development ; Real time ; Real-time systems ; Redundancy ; Sparks</subject><ispartof>IEEE access, 2020, Vol.8, p.84371-84384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513</citedby><cites>FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513</cites><orcidid>0000-0001-9428-4400 ; 0000-0001-7534-0630 ; 0000-0002-0085-1927 ; 0000-0001-6976-0348 ; 0000-0003-3709-6790 ; 0000-0003-1948-7835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9083981$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Silva, Rafael Luiz Da</creatorcontrib><creatorcontrib>Rossetti, Pedro</creatorcontrib><creatorcontrib>Santos, Joao Pedro F.</creatorcontrib><creatorcontrib>Lagana, Armando Antonio Maria</creatorcontrib><creatorcontrib>Colon, Diego</creatorcontrib><creatorcontrib>Justo, Joao Francisco</creatorcontrib><title>Real-Time Knock Characterization Using Adaptive Filters and Power Estimators</title><title>IEEE access</title><addtitle>Access</addtitle><description>We combined adaptive filters associated with power estimators to characterize the knock signal, obtained from a knock sensor, in an internal combustion engine. The filters were implemented using the automotive model-based design methodology, and the resulting software was embedded into hardware for a real-time evaluation of the proposed solution. The knock signals could be qualitatively identified in real-time, and thus have the potential to aid in the management of flexible-fuel engines. This approach has an extensive range of applications within the automotive industry, since it can be implemented within any model-based control strategy. For example, this methodology can be applied in commercial ECUs, currently used in most vehicles for knock detection, by simply eliminating an internal, dedicated, integrated circuit for knock identification, or by serving as a redundancy device (i.e: for safety purposes). Finally, this methodology can identify the knock signal, obtained from a knock sensor, just by using an algorithm implemented in the ECU's processor, which we show is identifiable in real-time.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Automobile industry</subject><subject>automotive electronics</subject><subject>Automotive engines</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Engines</subject><subject>Estimators</subject><subject>Fuels</subject><subject>Integrated circuits</subject><subject>Internal combustion engines</subject><subject>Knock</subject><subject>knock sensor</subject><subject>Microprocessors</subject><subject>model-based development</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Redundancy</subject><subject>Sparks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaKgqF_gS8HnrpNrk8elrBdcULw8h2mSata1WZOq6NdbrYjzMsOZOecMnKI4IjAjBPTJvGkWt7czChRmVGsiJd8q9iiRumKCye1_825xmPMKxlIjJOq9YnnjcV3dhWdfXvbRPpXNIya0g0_hE4cQ-_I-h_6hnDvcDOHNl6dhPS5zib0rr-O7T-UiD-EZh5jyQbHT4Tr7w9--X9yfLu6a82p5dXbRzJeV5aCGSrcdJVx46JC0LSjqnHCC16xTsm6d5Fo7IRlaSoCyWnMLCLzT0DJktSBsv7iYdF3Eldmk0T59mIjB_AAxPRhMQ7Brb4hrrdQ1Ukspr-tWcaTeo1aghGrBj1rHk9YmxZdXnweziq-pH983lAsOmioJ4xWbrmyKOSff_bkSMN8pmCkF852C-U1hZB1NrOC9_2NoUEwrwr4AN-qBow</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Silva, Rafael Luiz Da</creator><creator>Rossetti, Pedro</creator><creator>Santos, Joao Pedro F.</creator><creator>Lagana, Armando Antonio Maria</creator><creator>Colon, Diego</creator><creator>Justo, Joao Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9428-4400</orcidid><orcidid>https://orcid.org/0000-0001-7534-0630</orcidid><orcidid>https://orcid.org/0000-0002-0085-1927</orcidid><orcidid>https://orcid.org/0000-0001-6976-0348</orcidid><orcidid>https://orcid.org/0000-0003-3709-6790</orcidid><orcidid>https://orcid.org/0000-0003-1948-7835</orcidid></search><sort><creationdate>2020</creationdate><title>Real-Time Knock Characterization Using Adaptive Filters and Power Estimators</title><author>Silva, Rafael Luiz Da ; Rossetti, Pedro ; Santos, Joao Pedro F. ; Lagana, Armando Antonio Maria ; Colon, Diego ; Justo, Joao Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Automobile industry</topic><topic>automotive electronics</topic><topic>Automotive engines</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Engines</topic><topic>Estimators</topic><topic>Fuels</topic><topic>Integrated circuits</topic><topic>Internal combustion engines</topic><topic>Knock</topic><topic>knock sensor</topic><topic>Microprocessors</topic><topic>model-based development</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Redundancy</topic><topic>Sparks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Rafael Luiz Da</creatorcontrib><creatorcontrib>Rossetti, Pedro</creatorcontrib><creatorcontrib>Santos, Joao Pedro F.</creatorcontrib><creatorcontrib>Lagana, Armando Antonio Maria</creatorcontrib><creatorcontrib>Colon, Diego</creatorcontrib><creatorcontrib>Justo, Joao Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Rafael Luiz Da</au><au>Rossetti, Pedro</au><au>Santos, Joao Pedro F.</au><au>Lagana, Armando Antonio Maria</au><au>Colon, Diego</au><au>Justo, Joao Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Knock Characterization Using Adaptive Filters and Power Estimators</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>84371</spage><epage>84384</epage><pages>84371-84384</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We combined adaptive filters associated with power estimators to characterize the knock signal, obtained from a knock sensor, in an internal combustion engine. The filters were implemented using the automotive model-based design methodology, and the resulting software was embedded into hardware for a real-time evaluation of the proposed solution. The knock signals could be qualitatively identified in real-time, and thus have the potential to aid in the management of flexible-fuel engines. This approach has an extensive range of applications within the automotive industry, since it can be implemented within any model-based control strategy. For example, this methodology can be applied in commercial ECUs, currently used in most vehicles for knock detection, by simply eliminating an internal, dedicated, integrated circuit for knock identification, or by serving as a redundancy device (i.e: for safety purposes). Finally, this methodology can identify the knock signal, obtained from a knock sensor, just by using an algorithm implemented in the ECU's processor, which we show is identifiable in real-time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2991664</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9428-4400</orcidid><orcidid>https://orcid.org/0000-0001-7534-0630</orcidid><orcidid>https://orcid.org/0000-0002-0085-1927</orcidid><orcidid>https://orcid.org/0000-0001-6976-0348</orcidid><orcidid>https://orcid.org/0000-0003-3709-6790</orcidid><orcidid>https://orcid.org/0000-0003-1948-7835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.84371-84384 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1dbc697a2c22477b84a2eea980858b0e |
source | IEEE Xplore Open Access Journals |
subjects | Adaptive filters Algorithms Automobile industry automotive electronics Automotive engines Convergence Cost function Engines Estimators Fuels Integrated circuits Internal combustion engines Knock knock sensor Microprocessors model-based development Real time Real-time systems Redundancy Sparks |
title | Real-Time Knock Characterization Using Adaptive Filters and Power Estimators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Knock%20Characterization%20Using%20Adaptive%20Filters%20and%20Power%20Estimators&rft.jtitle=IEEE%20access&rft.au=Silva,%20Rafael%20Luiz%20Da&rft.date=2020&rft.volume=8&rft.spage=84371&rft.epage=84384&rft.pages=84371-84384&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2991664&rft_dat=%3Cproquest_doaj_%3E2454092860%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9bf2145e0fa1bb082dd5d5473f867bd6499d563ac21023794c0a04f90b3a37513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454092860&rft_id=info:pmid/&rft_ieee_id=9083981&rfr_iscdi=true |