Loading…
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns late...
Saved in:
Published in: | Nature communications 2020-12, Vol.11 (1), p.6136-11, Article 6136 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 6136 |
container_title | Nature communications |
container_volume | 11 |
creator | Julkunen, Heli Cichonska, Anna Gautam, Prson Szedmak, Sandor Douat, Jane Pahikkala, Tapio Aittokallio, Tero Rousu, Juho |
description | We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications.
Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies. |
doi_str_mv | 10.1038/s41467-020-19950-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dbe0a68db6948d0bdbef3a4f57cf4b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dbe0a68db6948d0bdbef3a4f57cf4b3</doaj_id><sourcerecordid>2473301629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3</originalsourceid><addsrcrecordid>eNp9kktv1DAQxyMEolXpF-AAkTgH_IrtXJBQxaPSSlzgbE38CF4l9mJ7i7afHu-mLe0FS5Y9nv_8ZmxP07zG6D1GVH7IDDMuOkRQh4ehR93ts-acIIY7LAh9_mh_1lzmvEV10AFLxl42Z5QSTuo8b8zG3tgEkw9Tu-zn4rs_cGh9KPVQFx9Dbl1MbT7kYhcoXre7ZI0_udrojlanZx-8hrk1aT-1Oi6jD3ASWOesLvlV88LBnO3l3XrR_Pzy-cfVt27z_ev11adNp3vOSgeccyTYKAYYMBkHkNYYAExNTwVDmghBMAXRS02xQIQ7xITs0ThK7qhw9KK5Xrkmwlbtkl8gHVQEr04HMU0KUr3DbBU2o0XApRn5wKRBY7UdBeZ6oR0baWV9XFm7_bhYo20oCeYn0Kee4H-pKd4oIZCUtK-AtytAJ5-LDyrEBAoj2RMlqRyOind3KVL8vbe5qG3cp1BfSBEmKEWYk6GqyD0n5pyse6gBI3VsBbW2gqqtoE6toG5r0JvH1T-E3H98FdBVkKsrTDb9y_0f7F-dSMA8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473301629</pqid></control><display><type>article</type><title>Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Julkunen, Heli ; Cichonska, Anna ; Gautam, Prson ; Szedmak, Sandor ; Douat, Jane ; Pahikkala, Tapio ; Aittokallio, Tero ; Rousu, Juho</creator><creatorcontrib>Julkunen, Heli ; Cichonska, Anna ; Gautam, Prson ; Szedmak, Sandor ; Douat, Jane ; Pahikkala, Tapio ; Aittokallio, Tero ; Rousu, Juho</creatorcontrib><description>We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications.
Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-19950-z</identifier><identifier>PMID: 33262326</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>49/47 ; 631/114/1305 ; 631/114/2163 ; 631/553 ; 631/67/69 ; 631/92 ; Antineoplastic Agents - pharmacology ; Antineoplastic drugs ; Antitumor agents ; Biotechnology ; Bortezomib ; Bortezomib - pharmacology ; Cell culture ; Cell Line, Tumor ; Combinatorial analysis ; Crizotinib - pharmacology ; Drug Interactions ; Drugs ; Enzyme inhibitors ; Factorization ; Humanities and Social Sciences ; Humans ; Kinases ; Learning algorithms ; Lymphoma ; Lymphoma - drug therapy ; Machine Learning ; Mathematical analysis ; multidisciplinary ; Oncology ; Performance prediction ; Pharmacogenomics ; Pharmacology ; Precision Medicine ; Predictions ; Proteasome inhibitors ; Protein-tyrosine kinase ; Science ; Science (multidisciplinary) ; Tensors</subject><ispartof>Nature communications, 2020-12, Vol.11 (1), p.6136-11, Article 6136</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3</citedby><cites>FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3</cites><orcidid>0000-0002-0705-4314 ; 0000-0003-1469-2215 ; 0000-0002-4282-0248 ; 0000-0002-1154-8501 ; 0000-0003-4183-2455 ; 0000-0002-0886-9769 ; 0000-0003-1072-8858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2473301629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2473301629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,26544,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33262326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julkunen, Heli</creatorcontrib><creatorcontrib>Cichonska, Anna</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Szedmak, Sandor</creatorcontrib><creatorcontrib>Douat, Jane</creatorcontrib><creatorcontrib>Pahikkala, Tapio</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><creatorcontrib>Rousu, Juho</creatorcontrib><title>Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications.
Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.</description><subject>49/47</subject><subject>631/114/1305</subject><subject>631/114/2163</subject><subject>631/553</subject><subject>631/67/69</subject><subject>631/92</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic drugs</subject><subject>Antitumor agents</subject><subject>Biotechnology</subject><subject>Bortezomib</subject><subject>Bortezomib - pharmacology</subject><subject>Cell culture</subject><subject>Cell Line, Tumor</subject><subject>Combinatorial analysis</subject><subject>Crizotinib - pharmacology</subject><subject>Drug Interactions</subject><subject>Drugs</subject><subject>Enzyme inhibitors</subject><subject>Factorization</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Learning algorithms</subject><subject>Lymphoma</subject><subject>Lymphoma - drug therapy</subject><subject>Machine Learning</subject><subject>Mathematical analysis</subject><subject>multidisciplinary</subject><subject>Oncology</subject><subject>Performance prediction</subject><subject>Pharmacogenomics</subject><subject>Pharmacology</subject><subject>Precision Medicine</subject><subject>Predictions</subject><subject>Proteasome inhibitors</subject><subject>Protein-tyrosine kinase</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tensors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQxyMEolXpF-AAkTgH_IrtXJBQxaPSSlzgbE38CF4l9mJ7i7afHu-mLe0FS5Y9nv_8ZmxP07zG6D1GVH7IDDMuOkRQh4ehR93ts-acIIY7LAh9_mh_1lzmvEV10AFLxl42Z5QSTuo8b8zG3tgEkw9Tu-zn4rs_cGh9KPVQFx9Dbl1MbT7kYhcoXre7ZI0_udrojlanZx-8hrk1aT-1Oi6jD3ASWOesLvlV88LBnO3l3XrR_Pzy-cfVt27z_ev11adNp3vOSgeccyTYKAYYMBkHkNYYAExNTwVDmghBMAXRS02xQIQ7xITs0ThK7qhw9KK5Xrkmwlbtkl8gHVQEr04HMU0KUr3DbBU2o0XApRn5wKRBY7UdBeZ6oR0baWV9XFm7_bhYo20oCeYn0Kee4H-pKd4oIZCUtK-AtytAJ5-LDyrEBAoj2RMlqRyOind3KVL8vbe5qG3cp1BfSBEmKEWYk6GqyD0n5pyse6gBI3VsBbW2gqqtoE6toG5r0JvH1T-E3H98FdBVkKsrTDb9y_0f7F-dSMA8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Julkunen, Heli</creator><creator>Cichonska, Anna</creator><creator>Gautam, Prson</creator><creator>Szedmak, Sandor</creator><creator>Douat, Jane</creator><creator>Pahikkala, Tapio</creator><creator>Aittokallio, Tero</creator><creator>Rousu, Juho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0705-4314</orcidid><orcidid>https://orcid.org/0000-0003-1469-2215</orcidid><orcidid>https://orcid.org/0000-0002-4282-0248</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-4183-2455</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><orcidid>https://orcid.org/0000-0003-1072-8858</orcidid></search><sort><creationdate>20201201</creationdate><title>Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects</title><author>Julkunen, Heli ; Cichonska, Anna ; Gautam, Prson ; Szedmak, Sandor ; Douat, Jane ; Pahikkala, Tapio ; Aittokallio, Tero ; Rousu, Juho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>49/47</topic><topic>631/114/1305</topic><topic>631/114/2163</topic><topic>631/553</topic><topic>631/67/69</topic><topic>631/92</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic drugs</topic><topic>Antitumor agents</topic><topic>Biotechnology</topic><topic>Bortezomib</topic><topic>Bortezomib - pharmacology</topic><topic>Cell culture</topic><topic>Cell Line, Tumor</topic><topic>Combinatorial analysis</topic><topic>Crizotinib - pharmacology</topic><topic>Drug Interactions</topic><topic>Drugs</topic><topic>Enzyme inhibitors</topic><topic>Factorization</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Learning algorithms</topic><topic>Lymphoma</topic><topic>Lymphoma - drug therapy</topic><topic>Machine Learning</topic><topic>Mathematical analysis</topic><topic>multidisciplinary</topic><topic>Oncology</topic><topic>Performance prediction</topic><topic>Pharmacogenomics</topic><topic>Pharmacology</topic><topic>Precision Medicine</topic><topic>Predictions</topic><topic>Proteasome inhibitors</topic><topic>Protein-tyrosine kinase</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julkunen, Heli</creatorcontrib><creatorcontrib>Cichonska, Anna</creatorcontrib><creatorcontrib>Gautam, Prson</creatorcontrib><creatorcontrib>Szedmak, Sandor</creatorcontrib><creatorcontrib>Douat, Jane</creatorcontrib><creatorcontrib>Pahikkala, Tapio</creatorcontrib><creatorcontrib>Aittokallio, Tero</creatorcontrib><creatorcontrib>Rousu, Juho</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julkunen, Heli</au><au>Cichonska, Anna</au><au>Gautam, Prson</au><au>Szedmak, Sandor</au><au>Douat, Jane</au><au>Pahikkala, Tapio</au><au>Aittokallio, Tero</au><au>Rousu, Juho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>6136</spage><epage>11</epage><pages>6136-11</pages><artnum>6136</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications.
Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33262326</pmid><doi>10.1038/s41467-020-19950-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0705-4314</orcidid><orcidid>https://orcid.org/0000-0003-1469-2215</orcidid><orcidid>https://orcid.org/0000-0002-4282-0248</orcidid><orcidid>https://orcid.org/0000-0002-1154-8501</orcidid><orcidid>https://orcid.org/0000-0003-4183-2455</orcidid><orcidid>https://orcid.org/0000-0002-0886-9769</orcidid><orcidid>https://orcid.org/0000-0003-1072-8858</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-12, Vol.11 (1), p.6136-11, Article 6136 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1dbe0a68db6948d0bdbef3a4f57cf4b3 |
source | NORA - Norwegian Open Research Archives; Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 49/47 631/114/1305 631/114/2163 631/553 631/67/69 631/92 Antineoplastic Agents - pharmacology Antineoplastic drugs Antitumor agents Biotechnology Bortezomib Bortezomib - pharmacology Cell culture Cell Line, Tumor Combinatorial analysis Crizotinib - pharmacology Drug Interactions Drugs Enzyme inhibitors Factorization Humanities and Social Sciences Humans Kinases Learning algorithms Lymphoma Lymphoma - drug therapy Machine Learning Mathematical analysis multidisciplinary Oncology Performance prediction Pharmacogenomics Pharmacology Precision Medicine Predictions Proteasome inhibitors Protein-tyrosine kinase Science Science (multidisciplinary) Tensors |
title | Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20multi-way%20interactions%20for%20systematic%20prediction%20of%20pre-clinical%20drug%20combination%20effects&rft.jtitle=Nature%20communications&rft.au=Julkunen,%20Heli&rft.date=2020-12-01&rft.volume=11&rft.issue=1&rft.spage=6136&rft.epage=11&rft.pages=6136-11&rft.artnum=6136&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-19950-z&rft_dat=%3Cproquest_doaj_%3E2473301629%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-a666074b79a912b9a8eddaa13d53740c277213a758c317026f047850bb86f37f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473301629&rft_id=info:pmid/33262326&rfr_iscdi=true |