Loading…

Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]

In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form t...

Full description

Saved in:
Bibliographic Details
Published in:F1000 research 2021, Vol.10, p.1162-1162
Main Authors: Egorov, Artyom A, Makeeva, Desislava S, Makarova, Nadezhda E, Bykov, Dmitri A, Hrytseniuk, Yanislav S, Mitkevich, Olga V, Urakov, Valery N, Alexandrov, Alexander I, Kulakovskiy, Ivan V, Dmitriev, Sergey E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23
cites cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23
container_end_page 1162
container_issue
container_start_page 1162
container_title F1000 research
container_volume 10
creator Egorov, Artyom A
Makeeva, Desislava S
Makarova, Nadezhda E
Bykov, Dmitri A
Hrytseniuk, Yanislav S
Mitkevich, Olga V
Urakov, Valery N
Alexandrov, Alexander I
Kulakovskiy, Ivan V
Dmitriev, Sergey E
description In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from S. cerevisiae strains with individual deletions of the TMA46 and GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE185458 and GSE185286.
doi_str_mv 10.12688/f1000research.74727.1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10</doaj_id><sourcerecordid>2610079067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</originalsourceid><addsrcrecordid>eNqFkltrGzEQhZfS0oQ0fyEI-pI8rKvb6pJCwSRNakgvuOlTKULWzibrrFcbadfF_76K7Zq4L33SoDnzcUY6WXZC8IhQodS7imCMA0Swwd2PJJdUjsiL7JBiLnLCMX35rD7IjmOcpwGsNRNUvs4OGNcYUyYOs35az3z-HR6RbUs0_TJe175Ct5_HXKBTdHk1_UbO1t3ryZRub-gZemi9e_BDj1ZgY49iH2zdRvRzCSHWvkXkPeoAAgqwrOH3OWLIdl3wSyh_vcleVbaJcLw9j7IfVx9vLz7lN1-vJxfjm9wVnJOcOSicVJbwsiLOcmsrXJQYV7zCmDAmqdNacc4ISKq0ngFJnVJhYrXCjrKjbLLhlt7OTRfqhQ0r421t1hc-3Bkb-to1YEjpSMkLIYAAV1zPmLRYU6oL4NQSnFgfNqxumC2gdNCmhZs96H6nre_NnV8aJZJR_mTmdAsI_nGA2JtFHR00jW3BD9FQkT5Vaixkkr79Rzr3Q2jTUyVV8qQKqXRSiY3KBR9jgGpnhmCzzonZy4lZ58SQNHjyfJXd2N9UJMH5RlBZNzT96olidpj_0P8A-WLIRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622985789</pqid></control><display><type>article</type><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</creator><creatorcontrib>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</creatorcontrib><description>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from S. cerevisiae strains with individual deletions of the TMA46 and GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE185458 and GSE185286.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.74727.1</identifier><identifier>PMID: 34900236</identifier><language>eng</language><publisher>England: Faculty of 1000 Ltd</publisher><subject>Animals ; Cell growth ; Cellular stress response ; Data Note ; DNA helicase ; eng ; Gene expression ; Generalized linear models ; Kinases ; Mammals ; Ontology ; Protein Biosynthesis ; Proteins ; Quality control ; ribosome collision ; ribosome profiling ; ribosome stalling ; Ribosomes ; Ribosomes - genetics ; RNA-Seq ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcriptome ; translatome ; Yeast</subject><ispartof>F1000 research, 2021, Vol.10, p.1162-1162</ispartof><rights>Copyright: © 2021 Egorov AA et al.</rights><rights>Copyright: © 2021 Egorov AA et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2021 Egorov AA et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</citedby><cites>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</cites><orcidid>0000-0002-1774-8475 ; 0000-0001-5578-5384 ; 0000-0002-6554-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622985789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622985789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4021,25751,27921,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34900236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egorov, Artyom A</creatorcontrib><creatorcontrib>Makeeva, Desislava S</creatorcontrib><creatorcontrib>Makarova, Nadezhda E</creatorcontrib><creatorcontrib>Bykov, Dmitri A</creatorcontrib><creatorcontrib>Hrytseniuk, Yanislav S</creatorcontrib><creatorcontrib>Mitkevich, Olga V</creatorcontrib><creatorcontrib>Urakov, Valery N</creatorcontrib><creatorcontrib>Alexandrov, Alexander I</creatorcontrib><creatorcontrib>Kulakovskiy, Ivan V</creatorcontrib><creatorcontrib>Dmitriev, Sergey E</creatorcontrib><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><title>F1000 research</title><addtitle>F1000Res</addtitle><description>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from S. cerevisiae strains with individual deletions of the TMA46 and GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE185458 and GSE185286.</description><subject>Animals</subject><subject>Cell growth</subject><subject>Cellular stress response</subject><subject>Data Note</subject><subject>DNA helicase</subject><subject>eng</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Ontology</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>Quality control</subject><subject>ribosome collision</subject><subject>ribosome profiling</subject><subject>ribosome stalling</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>RNA-Seq</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcriptome</subject><subject>translatome</subject><subject>Yeast</subject><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkltrGzEQhZfS0oQ0fyEI-pI8rKvb6pJCwSRNakgvuOlTKULWzibrrFcbadfF_76K7Zq4L33SoDnzcUY6WXZC8IhQodS7imCMA0Swwd2PJJdUjsiL7JBiLnLCMX35rD7IjmOcpwGsNRNUvs4OGNcYUyYOs35az3z-HR6RbUs0_TJe175Ct5_HXKBTdHk1_UbO1t3ryZRub-gZemi9e_BDj1ZgY49iH2zdRvRzCSHWvkXkPeoAAgqwrOH3OWLIdl3wSyh_vcleVbaJcLw9j7IfVx9vLz7lN1-vJxfjm9wVnJOcOSicVJbwsiLOcmsrXJQYV7zCmDAmqdNacc4ISKq0ngFJnVJhYrXCjrKjbLLhlt7OTRfqhQ0r421t1hc-3Bkb-to1YEjpSMkLIYAAV1zPmLRYU6oL4NQSnFgfNqxumC2gdNCmhZs96H6nre_NnV8aJZJR_mTmdAsI_nGA2JtFHR00jW3BD9FQkT5Vaixkkr79Rzr3Q2jTUyVV8qQKqXRSiY3KBR9jgGpnhmCzzonZy4lZ58SQNHjyfJXd2N9UJMH5RlBZNzT96olidpj_0P8A-WLIRw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Egorov, Artyom A</creator><creator>Makeeva, Desislava S</creator><creator>Makarova, Nadezhda E</creator><creator>Bykov, Dmitri A</creator><creator>Hrytseniuk, Yanislav S</creator><creator>Mitkevich, Olga V</creator><creator>Urakov, Valery N</creator><creator>Alexandrov, Alexander I</creator><creator>Kulakovskiy, Ivan V</creator><creator>Dmitriev, Sergey E</creator><general>Faculty of 1000 Ltd</general><general>F1000 Research Limited</general><general>F1000 Research Ltd</general><scope>C-E</scope><scope>CH4</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1774-8475</orcidid><orcidid>https://orcid.org/0000-0001-5578-5384</orcidid><orcidid>https://orcid.org/0000-0002-6554-8128</orcidid></search><sort><creationdate>2021</creationdate><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><author>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cell growth</topic><topic>Cellular stress response</topic><topic>Data Note</topic><topic>DNA helicase</topic><topic>eng</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Ontology</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>Quality control</topic><topic>ribosome collision</topic><topic>ribosome profiling</topic><topic>ribosome stalling</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>RNA-Seq</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcriptome</topic><topic>translatome</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egorov, Artyom A</creatorcontrib><creatorcontrib>Makeeva, Desislava S</creatorcontrib><creatorcontrib>Makarova, Nadezhda E</creatorcontrib><creatorcontrib>Bykov, Dmitri A</creatorcontrib><creatorcontrib>Hrytseniuk, Yanislav S</creatorcontrib><creatorcontrib>Mitkevich, Olga V</creatorcontrib><creatorcontrib>Urakov, Valery N</creatorcontrib><creatorcontrib>Alexandrov, Alexander I</creatorcontrib><creatorcontrib>Kulakovskiy, Ivan V</creatorcontrib><creatorcontrib>Dmitriev, Sergey E</creatorcontrib><collection>F1000Research</collection><collection>Faculty of 1000</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egorov, Artyom A</au><au>Makeeva, Desislava S</au><au>Makarova, Nadezhda E</au><au>Bykov, Dmitri A</au><au>Hrytseniuk, Yanislav S</au><au>Mitkevich, Olga V</au><au>Urakov, Valery N</au><au>Alexandrov, Alexander I</au><au>Kulakovskiy, Ivan V</au><au>Dmitriev, Sergey E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</atitle><jtitle>F1000 research</jtitle><addtitle>F1000Res</addtitle><date>2021</date><risdate>2021</risdate><volume>10</volume><spage>1162</spage><epage>1162</epage><pages>1162-1162</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from S. cerevisiae strains with individual deletions of the TMA46 and GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE185458 and GSE185286.</abstract><cop>England</cop><pub>Faculty of 1000 Ltd</pub><pmid>34900236</pmid><doi>10.12688/f1000research.74727.1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1774-8475</orcidid><orcidid>https://orcid.org/0000-0001-5578-5384</orcidid><orcidid>https://orcid.org/0000-0002-6554-8128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-1402
ispartof F1000 research, 2021, Vol.10, p.1162-1162
issn 2046-1402
2046-1402
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Animals
Cell growth
Cellular stress response
Data Note
DNA helicase
eng
Gene expression
Generalized linear models
Kinases
Mammals
Ontology
Protein Biosynthesis
Proteins
Quality control
ribosome collision
ribosome profiling
ribosome stalling
Ribosomes
Ribosomes - genetics
RNA-Seq
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcriptome
translatome
Yeast
title Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribo-Seq%20and%20RNA-Seq%20of%20TMA46%20(%20DFRP1)%20and%20GIR2%20(%20DFRP2)%20knockout%20yeast%20strains%20%5Bversion%201;%20peer%20review:%203%20approved%5D&rft.jtitle=F1000%20research&rft.au=Egorov,%20Artyom%20A&rft.date=2021&rft.volume=10&rft.spage=1162&rft.epage=1162&rft.pages=1162-1162&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.74727.1&rft_dat=%3Cproquest_doaj_%3E2610079067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622985789&rft_id=info:pmid/34900236&rfr_iscdi=true