Loading…
Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]
In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form t...
Saved in:
Published in: | F1000 research 2021, Vol.10, p.1162-1162 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23 |
container_end_page | 1162 |
container_issue | |
container_start_page | 1162 |
container_title | F1000 research |
container_volume | 10 |
creator | Egorov, Artyom A Makeeva, Desislava S Makarova, Nadezhda E Bykov, Dmitri A Hrytseniuk, Yanislav S Mitkevich, Olga V Urakov, Valery N Alexandrov, Alexander I Kulakovskiy, Ivan V Dmitriev, Sergey E |
description | In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis
in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from
S. cerevisiae strains with individual deletions of the
TMA46 and
GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession
GSE185458 and
GSE185286. |
doi_str_mv | 10.12688/f1000research.74727.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10</doaj_id><sourcerecordid>2610079067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</originalsourceid><addsrcrecordid>eNqFkltrGzEQhZfS0oQ0fyEI-pI8rKvb6pJCwSRNakgvuOlTKULWzibrrFcbadfF_76K7Zq4L33SoDnzcUY6WXZC8IhQodS7imCMA0Swwd2PJJdUjsiL7JBiLnLCMX35rD7IjmOcpwGsNRNUvs4OGNcYUyYOs35az3z-HR6RbUs0_TJe175Ct5_HXKBTdHk1_UbO1t3ryZRub-gZemi9e_BDj1ZgY49iH2zdRvRzCSHWvkXkPeoAAgqwrOH3OWLIdl3wSyh_vcleVbaJcLw9j7IfVx9vLz7lN1-vJxfjm9wVnJOcOSicVJbwsiLOcmsrXJQYV7zCmDAmqdNacc4ISKq0ngFJnVJhYrXCjrKjbLLhlt7OTRfqhQ0r421t1hc-3Bkb-to1YEjpSMkLIYAAV1zPmLRYU6oL4NQSnFgfNqxumC2gdNCmhZs96H6nre_NnV8aJZJR_mTmdAsI_nGA2JtFHR00jW3BD9FQkT5Vaixkkr79Rzr3Q2jTUyVV8qQKqXRSiY3KBR9jgGpnhmCzzonZy4lZ58SQNHjyfJXd2N9UJMH5RlBZNzT96olidpj_0P8A-WLIRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622985789</pqid></control><display><type>article</type><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</creator><creatorcontrib>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</creatorcontrib><description>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis
in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from
S. cerevisiae strains with individual deletions of the
TMA46 and
GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession
GSE185458 and
GSE185286.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.74727.1</identifier><identifier>PMID: 34900236</identifier><language>eng</language><publisher>England: Faculty of 1000 Ltd</publisher><subject>Animals ; Cell growth ; Cellular stress response ; Data Note ; DNA helicase ; eng ; Gene expression ; Generalized linear models ; Kinases ; Mammals ; Ontology ; Protein Biosynthesis ; Proteins ; Quality control ; ribosome collision ; ribosome profiling ; ribosome stalling ; Ribosomes ; Ribosomes - genetics ; RNA-Seq ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcriptome ; translatome ; Yeast</subject><ispartof>F1000 research, 2021, Vol.10, p.1162-1162</ispartof><rights>Copyright: © 2021 Egorov AA et al.</rights><rights>Copyright: © 2021 Egorov AA et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2021 Egorov AA et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</citedby><cites>FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</cites><orcidid>0000-0002-1774-8475 ; 0000-0001-5578-5384 ; 0000-0002-6554-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622985789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622985789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4021,25751,27921,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34900236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egorov, Artyom A</creatorcontrib><creatorcontrib>Makeeva, Desislava S</creatorcontrib><creatorcontrib>Makarova, Nadezhda E</creatorcontrib><creatorcontrib>Bykov, Dmitri A</creatorcontrib><creatorcontrib>Hrytseniuk, Yanislav S</creatorcontrib><creatorcontrib>Mitkevich, Olga V</creatorcontrib><creatorcontrib>Urakov, Valery N</creatorcontrib><creatorcontrib>Alexandrov, Alexander I</creatorcontrib><creatorcontrib>Kulakovskiy, Ivan V</creatorcontrib><creatorcontrib>Dmitriev, Sergey E</creatorcontrib><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><title>F1000 research</title><addtitle>F1000Res</addtitle><description>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis
in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from
S. cerevisiae strains with individual deletions of the
TMA46 and
GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession
GSE185458 and
GSE185286.</description><subject>Animals</subject><subject>Cell growth</subject><subject>Cellular stress response</subject><subject>Data Note</subject><subject>DNA helicase</subject><subject>eng</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Ontology</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>Quality control</subject><subject>ribosome collision</subject><subject>ribosome profiling</subject><subject>ribosome stalling</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>RNA-Seq</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcriptome</subject><subject>translatome</subject><subject>Yeast</subject><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkltrGzEQhZfS0oQ0fyEI-pI8rKvb6pJCwSRNakgvuOlTKULWzibrrFcbadfF_76K7Zq4L33SoDnzcUY6WXZC8IhQodS7imCMA0Swwd2PJJdUjsiL7JBiLnLCMX35rD7IjmOcpwGsNRNUvs4OGNcYUyYOs35az3z-HR6RbUs0_TJe175Ct5_HXKBTdHk1_UbO1t3ryZRub-gZemi9e_BDj1ZgY49iH2zdRvRzCSHWvkXkPeoAAgqwrOH3OWLIdl3wSyh_vcleVbaJcLw9j7IfVx9vLz7lN1-vJxfjm9wVnJOcOSicVJbwsiLOcmsrXJQYV7zCmDAmqdNacc4ISKq0ngFJnVJhYrXCjrKjbLLhlt7OTRfqhQ0r421t1hc-3Bkb-to1YEjpSMkLIYAAV1zPmLRYU6oL4NQSnFgfNqxumC2gdNCmhZs96H6nre_NnV8aJZJR_mTmdAsI_nGA2JtFHR00jW3BD9FQkT5Vaixkkr79Rzr3Q2jTUyVV8qQKqXRSiY3KBR9jgGpnhmCzzonZy4lZ58SQNHjyfJXd2N9UJMH5RlBZNzT96olidpj_0P8A-WLIRw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Egorov, Artyom A</creator><creator>Makeeva, Desislava S</creator><creator>Makarova, Nadezhda E</creator><creator>Bykov, Dmitri A</creator><creator>Hrytseniuk, Yanislav S</creator><creator>Mitkevich, Olga V</creator><creator>Urakov, Valery N</creator><creator>Alexandrov, Alexander I</creator><creator>Kulakovskiy, Ivan V</creator><creator>Dmitriev, Sergey E</creator><general>Faculty of 1000 Ltd</general><general>F1000 Research Limited</general><general>F1000 Research Ltd</general><scope>C-E</scope><scope>CH4</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1774-8475</orcidid><orcidid>https://orcid.org/0000-0001-5578-5384</orcidid><orcidid>https://orcid.org/0000-0002-6554-8128</orcidid></search><sort><creationdate>2021</creationdate><title>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</title><author>Egorov, Artyom A ; Makeeva, Desislava S ; Makarova, Nadezhda E ; Bykov, Dmitri A ; Hrytseniuk, Yanislav S ; Mitkevich, Olga V ; Urakov, Valery N ; Alexandrov, Alexander I ; Kulakovskiy, Ivan V ; Dmitriev, Sergey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cell growth</topic><topic>Cellular stress response</topic><topic>Data Note</topic><topic>DNA helicase</topic><topic>eng</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Ontology</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>Quality control</topic><topic>ribosome collision</topic><topic>ribosome profiling</topic><topic>ribosome stalling</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>RNA-Seq</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcriptome</topic><topic>translatome</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egorov, Artyom A</creatorcontrib><creatorcontrib>Makeeva, Desislava S</creatorcontrib><creatorcontrib>Makarova, Nadezhda E</creatorcontrib><creatorcontrib>Bykov, Dmitri A</creatorcontrib><creatorcontrib>Hrytseniuk, Yanislav S</creatorcontrib><creatorcontrib>Mitkevich, Olga V</creatorcontrib><creatorcontrib>Urakov, Valery N</creatorcontrib><creatorcontrib>Alexandrov, Alexander I</creatorcontrib><creatorcontrib>Kulakovskiy, Ivan V</creatorcontrib><creatorcontrib>Dmitriev, Sergey E</creatorcontrib><collection>F1000Research</collection><collection>Faculty of 1000</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egorov, Artyom A</au><au>Makeeva, Desislava S</au><au>Makarova, Nadezhda E</au><au>Bykov, Dmitri A</au><au>Hrytseniuk, Yanislav S</au><au>Mitkevich, Olga V</au><au>Urakov, Valery N</au><au>Alexandrov, Alexander I</au><au>Kulakovskiy, Ivan V</au><au>Dmitriev, Sergey E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved]</atitle><jtitle>F1000 research</jtitle><addtitle>F1000Res</addtitle><date>2021</date><risdate>2021</risdate><volume>10</volume><spage>1162</spage><epage>1162</epage><pages>1162-1162</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>In eukaryotes, stalled and collided ribosomes are recognized by several conserved multicomponent systems, which either block protein synthesis
in situ and resolve the collision locally, or trigger a general stress response. Yeast ribosome-binding GTPases RBG1 (DRG1 in mammals) and RBG2 (DRG2) form two distinct heterodimers with TMA46 (DFRP1) and GIR2 (DFRP2), respectively, both involved in mRNA translation. Accumulated evidence suggests that the dimers play partially redundant roles in elongation processivity and resolution of ribosome stalling and collision events, as well as in the regulation of GCN1-mediated signaling involved in ribosome-associated quality control (RQC). They also genetically interact with SLH1 (ASCC3) helicase, a key component of RQC trigger (RQT) complex disassembling collided ribosomes. Here, we present RNA-Seq and ribosome profiling (Ribo-Seq) data from
S. cerevisiae strains with individual deletions of the
TMA46 and
GIR2 genes. Raw RNA-Seq and Ribo-Seq data as well as gene-level read counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession
GSE185458 and
GSE185286.</abstract><cop>England</cop><pub>Faculty of 1000 Ltd</pub><pmid>34900236</pmid><doi>10.12688/f1000research.74727.1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1774-8475</orcidid><orcidid>https://orcid.org/0000-0001-5578-5384</orcidid><orcidid>https://orcid.org/0000-0002-6554-8128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-1402 |
ispartof | F1000 research, 2021, Vol.10, p.1162-1162 |
issn | 2046-1402 2046-1402 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1dc1d4566e1e4849b37a092295e42a10 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Animals Cell growth Cellular stress response Data Note DNA helicase eng Gene expression Generalized linear models Kinases Mammals Ontology Protein Biosynthesis Proteins Quality control ribosome collision ribosome profiling ribosome stalling Ribosomes Ribosomes - genetics RNA-Seq Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcriptome translatome Yeast |
title | Ribo-Seq and RNA-Seq of TMA46 ( DFRP1) and GIR2 ( DFRP2) knockout yeast strains [version 1; peer review: 3 approved] |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribo-Seq%20and%20RNA-Seq%20of%20TMA46%20(%20DFRP1)%20and%20GIR2%20(%20DFRP2)%20knockout%20yeast%20strains%20%5Bversion%201;%20peer%20review:%203%20approved%5D&rft.jtitle=F1000%20research&rft.au=Egorov,%20Artyom%20A&rft.date=2021&rft.volume=10&rft.spage=1162&rft.epage=1162&rft.pages=1162-1162&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.74727.1&rft_dat=%3Cproquest_doaj_%3E2610079067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5441-3ce5c78a14df1ca4aaf05d00f4f0013372c9984431e72899be14f0d801a980c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622985789&rft_id=info:pmid/34900236&rfr_iscdi=true |