Loading…

How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy

The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflamma...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-12, Vol.22 (24), p.13232
Main Authors: Zheng, Wanglong, Xia, Nengwen, Zhang, Jiajia, Chen, Nanhua, Meurens, François, Liu, Zongping, Zhu, Jianzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3
cites cdi_FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3
container_end_page
container_issue 24
container_start_page 13232
container_title International journal of molecular sciences
container_volume 22
creator Zheng, Wanglong
Xia, Nengwen
Zhang, Jiajia
Chen, Nanhua
Meurens, François
Liu, Zongping
Zhu, Jianzhong
description The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS-STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS-STING pathway and their consequences. The cGAS-STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS-DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress-mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.
doi_str_mv 10.3390/ijms222413232
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dc42acaa11d4b1981549445a4accd2c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dc42acaa11d4b1981549445a4accd2c</doaj_id><sourcerecordid>2614229448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3</originalsourceid><addsrcrecordid>eNpdkt9v0zAQxy0EYlvhkVcUiRf2EPCvNPELUrSNNlIZk7o9WxfbaVIldomTTv3vceiY1j2ddf58v3dnH0KfCP7GmMDfm23nKaWcMMroG3ROOKUxxvP07YvzGbrwfotxQBLxHp0xLniGaXqOfi3dYzTUJiqshSGErhutia5v82htrG_sJlKLfB2v74vbRXQHQ_0Ih6jwgd-7dm901NgoHwe3q2Fz-IDeVdB68_EpztDDz5v7q2W8-r0orvJVrJKMDLECpUVScsIrQhhjc2BpWSpRGtCCsyxN2BwrU6lUVIlJNFRVmgkFAGXQJ4rNUHH01Q62ctc3HfQH6aCR_xKu30joh0a1RhKtOIWgJUTzkoigD8PzBDgopenk9ePotRvLzmhl7NBDe2J6emObWm7cXmYp5ozSYHB5NKhfyZb5Sk45HKYRJMn2JLBfn4r17s9o_CC7xivTtmCNG72k8-nPQn9ZQL-8Qrdu7G141omiGSE81J-h-Eip3nnfm-q5A4LltCDyZEEC__nltM_0_41gfwG2DbSz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612811404</pqid></control><display><type>article</type><title>How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Zheng, Wanglong ; Xia, Nengwen ; Zhang, Jiajia ; Chen, Nanhua ; Meurens, François ; Liu, Zongping ; Zhu, Jianzhong</creator><creatorcontrib>Zheng, Wanglong ; Xia, Nengwen ; Zhang, Jiajia ; Chen, Nanhua ; Meurens, François ; Liu, Zongping ; Zhu, Jianzhong</creatorcontrib><description>The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS-STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS-STING pathway and their consequences. The cGAS-STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS-DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress-mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222413232</identifier><identifier>PMID: 34948027</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Autophagy ; Beclin-1 - metabolism ; Binding sites ; Biosynthesis ; cGAS ; Chromosomes ; Cytokines ; Deoxyribonucleic acid ; DNA ; DNA - immunology ; DNA sensing ; Endoplasmic reticulum ; Herpes viruses ; Homeostasis ; Humans ; IFN ; Immune response ; Immune system ; Immunity, Innate ; Inflammation ; Injury prevention ; Innate immunity ; Insects ; Interferon ; Kinases ; Life Sciences ; Lipids ; Liquid phases ; Membrane Proteins - metabolism ; Membranes ; Microtubule-Associated Proteins - metabolism ; Mitochondrial DNA ; Nucleotidyltransferases - metabolism ; Pathogens ; Phagocytosis ; Phase separation ; Proteins ; Review ; Signal Transduction ; STING ; TOR protein ; Tumors ; Zika virus</subject><ispartof>International journal of molecular sciences, 2021-12, Vol.22 (24), p.13232</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3</citedby><cites>FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3</cites><orcidid>0000-0002-9480-0185 ; 0000-0002-1909-8760 ; 0000-0001-9071-8363 ; 0000-0002-0353-4871 ; 0000-0002-0939-331X ; 0000-0002-7082-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612811404/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612811404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34948027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03609158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wanglong</creatorcontrib><creatorcontrib>Xia, Nengwen</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Chen, Nanhua</creatorcontrib><creatorcontrib>Meurens, François</creatorcontrib><creatorcontrib>Liu, Zongping</creatorcontrib><creatorcontrib>Zhu, Jianzhong</creatorcontrib><title>How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS-STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS-STING pathway and their consequences. The cGAS-STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS-DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress-mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Beclin-1 - metabolism</subject><subject>Binding sites</subject><subject>Biosynthesis</subject><subject>cGAS</subject><subject>Chromosomes</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - immunology</subject><subject>DNA sensing</subject><subject>Endoplasmic reticulum</subject><subject>Herpes viruses</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>IFN</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate</subject><subject>Inflammation</subject><subject>Injury prevention</subject><subject>Innate immunity</subject><subject>Insects</subject><subject>Interferon</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Liquid phases</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Pathogens</subject><subject>Phagocytosis</subject><subject>Phase separation</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal Transduction</subject><subject>STING</subject><subject>TOR protein</subject><subject>Tumors</subject><subject>Zika virus</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9v0zAQxy0EYlvhkVcUiRf2EPCvNPELUrSNNlIZk7o9WxfbaVIldomTTv3vceiY1j2ddf58v3dnH0KfCP7GmMDfm23nKaWcMMroG3ROOKUxxvP07YvzGbrwfotxQBLxHp0xLniGaXqOfi3dYzTUJiqshSGErhutia5v82htrG_sJlKLfB2v74vbRXQHQ_0Ih6jwgd-7dm901NgoHwe3q2Fz-IDeVdB68_EpztDDz5v7q2W8-r0orvJVrJKMDLECpUVScsIrQhhjc2BpWSpRGtCCsyxN2BwrU6lUVIlJNFRVmgkFAGXQJ4rNUHH01Q62ctc3HfQH6aCR_xKu30joh0a1RhKtOIWgJUTzkoigD8PzBDgopenk9ePotRvLzmhl7NBDe2J6emObWm7cXmYp5ozSYHB5NKhfyZb5Sk45HKYRJMn2JLBfn4r17s9o_CC7xivTtmCNG72k8-nPQn9ZQL-8Qrdu7G141omiGSE81J-h-Eip3nnfm-q5A4LltCDyZEEC__nltM_0_41gfwG2DbSz</recordid><startdate>20211208</startdate><enddate>20211208</enddate><creator>Zheng, Wanglong</creator><creator>Xia, Nengwen</creator><creator>Zhang, Jiajia</creator><creator>Chen, Nanhua</creator><creator>Meurens, François</creator><creator>Liu, Zongping</creator><creator>Zhu, Jianzhong</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9480-0185</orcidid><orcidid>https://orcid.org/0000-0002-1909-8760</orcidid><orcidid>https://orcid.org/0000-0001-9071-8363</orcidid><orcidid>https://orcid.org/0000-0002-0353-4871</orcidid><orcidid>https://orcid.org/0000-0002-0939-331X</orcidid><orcidid>https://orcid.org/0000-0002-7082-1993</orcidid></search><sort><creationdate>20211208</creationdate><title>How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy</title><author>Zheng, Wanglong ; Xia, Nengwen ; Zhang, Jiajia ; Chen, Nanhua ; Meurens, François ; Liu, Zongping ; Zhu, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Beclin-1 - metabolism</topic><topic>Binding sites</topic><topic>Biosynthesis</topic><topic>cGAS</topic><topic>Chromosomes</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - immunology</topic><topic>DNA sensing</topic><topic>Endoplasmic reticulum</topic><topic>Herpes viruses</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>IFN</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate</topic><topic>Inflammation</topic><topic>Injury prevention</topic><topic>Innate immunity</topic><topic>Insects</topic><topic>Interferon</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Liquid phases</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Pathogens</topic><topic>Phagocytosis</topic><topic>Phase separation</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal Transduction</topic><topic>STING</topic><topic>TOR protein</topic><topic>Tumors</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wanglong</creatorcontrib><creatorcontrib>Xia, Nengwen</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Chen, Nanhua</creatorcontrib><creatorcontrib>Meurens, François</creatorcontrib><creatorcontrib>Liu, Zongping</creatorcontrib><creatorcontrib>Zhu, Jianzhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wanglong</au><au>Xia, Nengwen</au><au>Zhang, Jiajia</au><au>Chen, Nanhua</au><au>Meurens, François</au><au>Liu, Zongping</au><au>Zhu, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-12-08</date><risdate>2021</risdate><volume>22</volume><issue>24</issue><spage>13232</spage><pages>13232-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The cGAS-STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS-STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS-STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS-STING pathway and their consequences. The cGAS-STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS-DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress-mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34948027</pmid><doi>10.3390/ijms222413232</doi><orcidid>https://orcid.org/0000-0002-9480-0185</orcidid><orcidid>https://orcid.org/0000-0002-1909-8760</orcidid><orcidid>https://orcid.org/0000-0001-9071-8363</orcidid><orcidid>https://orcid.org/0000-0002-0353-4871</orcidid><orcidid>https://orcid.org/0000-0002-0939-331X</orcidid><orcidid>https://orcid.org/0000-0002-7082-1993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-12, Vol.22 (24), p.13232
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1dc42acaa11d4b1981549445a4accd2c
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Animals
Autophagy
Beclin-1 - metabolism
Binding sites
Biosynthesis
cGAS
Chromosomes
Cytokines
Deoxyribonucleic acid
DNA
DNA - immunology
DNA sensing
Endoplasmic reticulum
Herpes viruses
Homeostasis
Humans
IFN
Immune response
Immune system
Immunity, Innate
Inflammation
Injury prevention
Innate immunity
Insects
Interferon
Kinases
Life Sciences
Lipids
Liquid phases
Membrane Proteins - metabolism
Membranes
Microtubule-Associated Proteins - metabolism
Mitochondrial DNA
Nucleotidyltransferases - metabolism
Pathogens
Phagocytosis
Phase separation
Proteins
Review
Signal Transduction
STING
TOR protein
Tumors
Zika virus
title How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20Innate%20Immune%20DNA%20Sensing%20cGAS-STING%20Pathway%20Is%20Involved%20in%20Autophagy&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zheng,%20Wanglong&rft.date=2021-12-08&rft.volume=22&rft.issue=24&rft.spage=13232&rft.pages=13232-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222413232&rft_dat=%3Cproquest_doaj_%3E2614229448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c581t-cacd95b414f113336a37bbc9bead943875360cefc79f5e5daff789caaab5815c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612811404&rft_id=info:pmid/34948027&rfr_iscdi=true