Loading…
Electromagnetic Testing of Moisture Separation Reheater Tube based on Multivariate Singular Spectral Analysis
Moisture separator reheater (MSR) tubing systems are an important part of a pressurized-water power plant to increase the efficiency of the heat transfer rate. The MSR tubes are finned tubes which are made of ferritic stainless steel (SS439) with a high strength and corrosion resistance characterist...
Saved in:
Published in: | Applied sciences 2020-06, Vol.10 (11), p.3954 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Moisture separator reheater (MSR) tubing systems are an important part of a pressurized-water power plant to increase the efficiency of the heat transfer rate. The MSR tubes are finned tubes which are made of ferritic stainless steel (SS439) with a high strength and corrosion resistance characteristics. However, corrosion can appear along with the fins after a long period of operation of the MSR tubes that requires nondestructive testing (NDT) of the MSR tubes’ periodically. Electromagnetic testing (ET) is an efficient NDT method for the inspection of far-side corrosion in the MSR tubes. However, the ET sensor signal is affected by signal noise from the fins. Material degradation that make it challenging to inspect and evaluate the corrosion. In this study, we proposed three ET methods, including magnetic flux leakage testing, eddy current testing and partial saturation eddy current testing, and incorporated with a multivariate singular spectral analysis (MSSA) filter to improve the detectability of the corrosion in the MSR tubes. The proposed MSSA filter was compared with the multivariate wavelet transform filter and Gabor transform filter, and the results showed more efficient and stable results of the MSSA filter in the extraction of the corrosion signal. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10113954 |