Loading…
The effect of moisture content over the fibre saturation points on the impact strength of wood
The article's main aim is to assess the mechanical behaviour of linden under high-rate loadings (impact) and its change due to changes in moisture content (MC) over fibre saturation point. For assessing the mechanical properties of green wood, mainly the data of the dried wood is not applicable...
Saved in:
Published in: | Royal Society open science 2024-02, Vol.11 (2), p.231685-9 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The article's main aim is to assess the mechanical behaviour of linden under high-rate loadings (impact) and its change due to changes in moisture content (MC) over fibre saturation point. For assessing the mechanical properties of green wood, mainly the data of the dried wood is not applicable since the moisture content can drastically affect the mechanical properties of the wood. By testing both dried and high-moisture-content wood, we can understand a general viewpoint toward the effect of the moisture content on the impact behaviour of the wood. Several test samples were made of linden wood with different moisture content levels of 11%, 60% and 160%. A drop-weight impact machine tested the specimens to measure the reaction force of the hammer during a very short impact period. The results of the tests were parameters such as force-time chart, the maximum force required for crack initiation, the impact bending strength (IBS) and the work needed for crack initiation. The results indicated an increase in MC decreases the maximum force, work required for crack initiation and IBS drastically. However, when MC exceeded the fibre saturation point (FSP), there was no further influence on the force pattern and maximum required force. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.231685 |