Loading…
Rhizosphere bacteriome structure and functions
Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to gen...
Saved in:
Published in: | Nature communications 2022-02, Vol.13 (1), p.836-836, Article 836 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3 |
container_end_page | 836 |
container_issue | 1 |
container_start_page | 836 |
container_title | Nature communications |
container_volume | 13 |
creator | Ling, Ning Wang, Tingting Kuzyakov, Yakov |
description | Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for
r
-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted.
Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots. |
doi_str_mv | 10.1038/s41467-022-28448-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dd877b644cd466292efe68ca299f423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dd877b644cd466292efe68ca299f423</doaj_id><sourcerecordid>2628296975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaEKSP9BDWeilF6fSSNbHpVBCmwQChdCehT7Gu1681layC-mvrxKnadJDdNEw88w7I72EvGX0jFGuPxbBhFQNBWhAC6Eb84ocARWsYQr46yfxITktZUvr4YZV9A055C0TRlFxRM5uNv3vVPYbzLjyLkyY-7TDVZnyHKa5Jt0YV908hqlPYzkhB50bCp4-3Mfkx9cv388vm-tvF1fnn6-b0Ao6NRF9NEJKBr6lyhulgmOd74QJAWKsIQRgNErFW4pBUqDoADqvlRat8fyYXC26Mbmt3ed-5_KtTa6394mU19blqQ8DWhajVspLIUKsI8EAdih1cGBMJ4BXrU-L1n72O4wBxym74Zno88rYb-w6_bJac6UpVIEPDwI5_ZyxTHbXl4DD4EZMc7EgQYORRrUVff8fuk1zHutX3VFKVzukrBQsVMiplIzd4zKM2jt37eKure7ae3etqU3vnj7jseWvlxXgC1BqaVxj_jf7Bdk_S-mvWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627872366</pqid></control><display><type>article</type><title>Rhizosphere bacteriome structure and functions</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</creator><creatorcontrib>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</creatorcontrib><description>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for
r
-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted.
Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28448-9</identifier><identifier>PMID: 35149704</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>49/23 ; 631/158/2456 ; 631/326/2565/855 ; 704/158/2456 ; Adaptation ; Antitoxins ; Bacteria - classification ; Bacteria - genetics ; Bacterial Physiological Phenomena ; Bacteroidetes ; Biodiversity ; Composition ; Denitrification ; Dormancy ; Genes ; Humanities and Social Sciences ; Microbiota ; Microbiota - genetics ; Microorganisms ; multidisciplinary ; Nitrification ; Nitrogen fixation ; Nitrogenation ; Organic compounds ; Proteobacteria ; Rhizosphere ; Rhizosphere microorganisms ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Science ; Science (multidisciplinary) ; Seed banks ; Seeds ; Soil ; Soil dynamics ; Soil Microbiology ; Soil microorganisms ; Soils ; Sporulation ; Sustainable agriculture ; Sustainable development ; Toxins</subject><ispartof>Nature communications, 2022-02, Vol.13 (1), p.836-836, Article 836</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</citedby><cites>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</cites><orcidid>0000-0002-8452-2927 ; 0000-0002-9863-8461 ; 0000-0003-1250-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627872366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627872366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Ning</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Kuzyakov, Yakov</creatorcontrib><title>Rhizosphere bacteriome structure and functions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for
r
-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted.
Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</description><subject>49/23</subject><subject>631/158/2456</subject><subject>631/326/2565/855</subject><subject>704/158/2456</subject><subject>Adaptation</subject><subject>Antitoxins</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteroidetes</subject><subject>Biodiversity</subject><subject>Composition</subject><subject>Denitrification</subject><subject>Dormancy</subject><subject>Genes</subject><subject>Humanities and Social Sciences</subject><subject>Microbiota</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Nitrification</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Organic compounds</subject><subject>Proteobacteria</subject><subject>Rhizosphere</subject><subject>Rhizosphere microorganisms</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seed banks</subject><subject>Seeds</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Sporulation</subject><subject>Sustainable agriculture</subject><subject>Sustainable development</subject><subject>Toxins</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpaEKSP9BDWeilF6fSSNbHpVBCmwQChdCehT7Gu1681layC-mvrxKnadJDdNEw88w7I72EvGX0jFGuPxbBhFQNBWhAC6Eb84ocARWsYQr46yfxITktZUvr4YZV9A055C0TRlFxRM5uNv3vVPYbzLjyLkyY-7TDVZnyHKa5Jt0YV908hqlPYzkhB50bCp4-3Mfkx9cv388vm-tvF1fnn6-b0Ao6NRF9NEJKBr6lyhulgmOd74QJAWKsIQRgNErFW4pBUqDoADqvlRat8fyYXC26Mbmt3ed-5_KtTa6394mU19blqQ8DWhajVspLIUKsI8EAdih1cGBMJ4BXrU-L1n72O4wBxym74Zno88rYb-w6_bJac6UpVIEPDwI5_ZyxTHbXl4DD4EZMc7EgQYORRrUVff8fuk1zHutX3VFKVzukrBQsVMiplIzd4zKM2jt37eKure7ae3etqU3vnj7jseWvlxXgC1BqaVxj_jf7Bdk_S-mvWA</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>Ling, Ning</creator><creator>Wang, Tingting</creator><creator>Kuzyakov, Yakov</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8452-2927</orcidid><orcidid>https://orcid.org/0000-0002-9863-8461</orcidid><orcidid>https://orcid.org/0000-0003-1250-4073</orcidid></search><sort><creationdate>20220211</creationdate><title>Rhizosphere bacteriome structure and functions</title><author>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>49/23</topic><topic>631/158/2456</topic><topic>631/326/2565/855</topic><topic>704/158/2456</topic><topic>Adaptation</topic><topic>Antitoxins</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteroidetes</topic><topic>Biodiversity</topic><topic>Composition</topic><topic>Denitrification</topic><topic>Dormancy</topic><topic>Genes</topic><topic>Humanities and Social Sciences</topic><topic>Microbiota</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Nitrification</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Organic compounds</topic><topic>Proteobacteria</topic><topic>Rhizosphere</topic><topic>Rhizosphere microorganisms</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seed banks</topic><topic>Seeds</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Sporulation</topic><topic>Sustainable agriculture</topic><topic>Sustainable development</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Ning</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Kuzyakov, Yakov</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Ning</au><au>Wang, Tingting</au><au>Kuzyakov, Yakov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizosphere bacteriome structure and functions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-02-11</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>836</spage><epage>836</epage><pages>836-836</pages><artnum>836</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for
r
-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted.
Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35149704</pmid><doi>10.1038/s41467-022-28448-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8452-2927</orcidid><orcidid>https://orcid.org/0000-0002-9863-8461</orcidid><orcidid>https://orcid.org/0000-0003-1250-4073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-02, Vol.13 (1), p.836-836, Article 836 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1dd877b644cd466292efe68ca299f423 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 49/23 631/158/2456 631/326/2565/855 704/158/2456 Adaptation Antitoxins Bacteria - classification Bacteria - genetics Bacterial Physiological Phenomena Bacteroidetes Biodiversity Composition Denitrification Dormancy Genes Humanities and Social Sciences Microbiota Microbiota - genetics Microorganisms multidisciplinary Nitrification Nitrogen fixation Nitrogenation Organic compounds Proteobacteria Rhizosphere Rhizosphere microorganisms RNA, Ribosomal, 16S - genetics rRNA 16S Science Science (multidisciplinary) Seed banks Seeds Soil Soil dynamics Soil Microbiology Soil microorganisms Soils Sporulation Sustainable agriculture Sustainable development Toxins |
title | Rhizosphere bacteriome structure and functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizosphere%20bacteriome%20structure%20and%20functions&rft.jtitle=Nature%20communications&rft.au=Ling,%20Ning&rft.date=2022-02-11&rft.volume=13&rft.issue=1&rft.spage=836&rft.epage=836&rft.pages=836-836&rft.artnum=836&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28448-9&rft_dat=%3Cproquest_doaj_%3E2628296975%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627872366&rft_id=info:pmid/35149704&rfr_iscdi=true |