Loading…

Rhizosphere bacteriome structure and functions

Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to gen...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-02, Vol.13 (1), p.836-836, Article 836
Main Authors: Ling, Ning, Wang, Tingting, Kuzyakov, Yakov
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3
cites cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3
container_end_page 836
container_issue 1
container_start_page 836
container_title Nature communications
container_volume 13
creator Ling, Ning
Wang, Tingting
Kuzyakov, Yakov
description Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for r -strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted. Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.
doi_str_mv 10.1038/s41467-022-28448-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1dd877b644cd466292efe68ca299f423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1dd877b644cd466292efe68ca299f423</doaj_id><sourcerecordid>2628296975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaEKSP9BDWeilF6fSSNbHpVBCmwQChdCehT7Gu1681layC-mvrxKnadJDdNEw88w7I72EvGX0jFGuPxbBhFQNBWhAC6Eb84ocARWsYQr46yfxITktZUvr4YZV9A055C0TRlFxRM5uNv3vVPYbzLjyLkyY-7TDVZnyHKa5Jt0YV908hqlPYzkhB50bCp4-3Mfkx9cv388vm-tvF1fnn6-b0Ao6NRF9NEJKBr6lyhulgmOd74QJAWKsIQRgNErFW4pBUqDoADqvlRat8fyYXC26Mbmt3ed-5_KtTa6394mU19blqQ8DWhajVspLIUKsI8EAdih1cGBMJ4BXrU-L1n72O4wBxym74Zno88rYb-w6_bJac6UpVIEPDwI5_ZyxTHbXl4DD4EZMc7EgQYORRrUVff8fuk1zHutX3VFKVzukrBQsVMiplIzd4zKM2jt37eKure7ae3etqU3vnj7jseWvlxXgC1BqaVxj_jf7Bdk_S-mvWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627872366</pqid></control><display><type>article</type><title>Rhizosphere bacteriome structure and functions</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</creator><creatorcontrib>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</creatorcontrib><description>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for r -strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted. Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-28448-9</identifier><identifier>PMID: 35149704</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>49/23 ; 631/158/2456 ; 631/326/2565/855 ; 704/158/2456 ; Adaptation ; Antitoxins ; Bacteria - classification ; Bacteria - genetics ; Bacterial Physiological Phenomena ; Bacteroidetes ; Biodiversity ; Composition ; Denitrification ; Dormancy ; Genes ; Humanities and Social Sciences ; Microbiota ; Microbiota - genetics ; Microorganisms ; multidisciplinary ; Nitrification ; Nitrogen fixation ; Nitrogenation ; Organic compounds ; Proteobacteria ; Rhizosphere ; Rhizosphere microorganisms ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Science ; Science (multidisciplinary) ; Seed banks ; Seeds ; Soil ; Soil dynamics ; Soil Microbiology ; Soil microorganisms ; Soils ; Sporulation ; Sustainable agriculture ; Sustainable development ; Toxins</subject><ispartof>Nature communications, 2022-02, Vol.13 (1), p.836-836, Article 836</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</citedby><cites>FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</cites><orcidid>0000-0002-8452-2927 ; 0000-0002-9863-8461 ; 0000-0003-1250-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627872366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627872366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35149704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Ning</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Kuzyakov, Yakov</creatorcontrib><title>Rhizosphere bacteriome structure and functions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for r -strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted. Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</description><subject>49/23</subject><subject>631/158/2456</subject><subject>631/326/2565/855</subject><subject>704/158/2456</subject><subject>Adaptation</subject><subject>Antitoxins</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteroidetes</subject><subject>Biodiversity</subject><subject>Composition</subject><subject>Denitrification</subject><subject>Dormancy</subject><subject>Genes</subject><subject>Humanities and Social Sciences</subject><subject>Microbiota</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Nitrification</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Organic compounds</subject><subject>Proteobacteria</subject><subject>Rhizosphere</subject><subject>Rhizosphere microorganisms</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seed banks</subject><subject>Seeds</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Sporulation</subject><subject>Sustainable agriculture</subject><subject>Sustainable development</subject><subject>Toxins</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhkVpaEKSP9BDWeilF6fSSNbHpVBCmwQChdCehT7Gu1681layC-mvrxKnadJDdNEw88w7I72EvGX0jFGuPxbBhFQNBWhAC6Eb84ocARWsYQr46yfxITktZUvr4YZV9A055C0TRlFxRM5uNv3vVPYbzLjyLkyY-7TDVZnyHKa5Jt0YV908hqlPYzkhB50bCp4-3Mfkx9cv388vm-tvF1fnn6-b0Ao6NRF9NEJKBr6lyhulgmOd74QJAWKsIQRgNErFW4pBUqDoADqvlRat8fyYXC26Mbmt3ed-5_KtTa6394mU19blqQ8DWhajVspLIUKsI8EAdih1cGBMJ4BXrU-L1n72O4wBxym74Zno88rYb-w6_bJac6UpVIEPDwI5_ZyxTHbXl4DD4EZMc7EgQYORRrUVff8fuk1zHutX3VFKVzukrBQsVMiplIzd4zKM2jt37eKure7ae3etqU3vnj7jseWvlxXgC1BqaVxj_jf7Bdk_S-mvWA</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>Ling, Ning</creator><creator>Wang, Tingting</creator><creator>Kuzyakov, Yakov</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8452-2927</orcidid><orcidid>https://orcid.org/0000-0002-9863-8461</orcidid><orcidid>https://orcid.org/0000-0003-1250-4073</orcidid></search><sort><creationdate>20220211</creationdate><title>Rhizosphere bacteriome structure and functions</title><author>Ling, Ning ; Wang, Tingting ; Kuzyakov, Yakov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>49/23</topic><topic>631/158/2456</topic><topic>631/326/2565/855</topic><topic>704/158/2456</topic><topic>Adaptation</topic><topic>Antitoxins</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteroidetes</topic><topic>Biodiversity</topic><topic>Composition</topic><topic>Denitrification</topic><topic>Dormancy</topic><topic>Genes</topic><topic>Humanities and Social Sciences</topic><topic>Microbiota</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Nitrification</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Organic compounds</topic><topic>Proteobacteria</topic><topic>Rhizosphere</topic><topic>Rhizosphere microorganisms</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seed banks</topic><topic>Seeds</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Sporulation</topic><topic>Sustainable agriculture</topic><topic>Sustainable development</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Ning</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Kuzyakov, Yakov</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Ning</au><au>Wang, Tingting</au><au>Kuzyakov, Yakov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizosphere bacteriome structure and functions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-02-11</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>836</spage><epage>836</epage><pages>836-836</pages><artnum>836</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for r -strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted. Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35149704</pmid><doi>10.1038/s41467-022-28448-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8452-2927</orcidid><orcidid>https://orcid.org/0000-0002-9863-8461</orcidid><orcidid>https://orcid.org/0000-0003-1250-4073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-02, Vol.13 (1), p.836-836, Article 836
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1dd877b644cd466292efe68ca299f423
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 49/23
631/158/2456
631/326/2565/855
704/158/2456
Adaptation
Antitoxins
Bacteria - classification
Bacteria - genetics
Bacterial Physiological Phenomena
Bacteroidetes
Biodiversity
Composition
Denitrification
Dormancy
Genes
Humanities and Social Sciences
Microbiota
Microbiota - genetics
Microorganisms
multidisciplinary
Nitrification
Nitrogen fixation
Nitrogenation
Organic compounds
Proteobacteria
Rhizosphere
Rhizosphere microorganisms
RNA, Ribosomal, 16S - genetics
rRNA 16S
Science
Science (multidisciplinary)
Seed banks
Seeds
Soil
Soil dynamics
Soil Microbiology
Soil microorganisms
Soils
Sporulation
Sustainable agriculture
Sustainable development
Toxins
title Rhizosphere bacteriome structure and functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizosphere%20bacteriome%20structure%20and%20functions&rft.jtitle=Nature%20communications&rft.au=Ling,%20Ning&rft.date=2022-02-11&rft.volume=13&rft.issue=1&rft.spage=836&rft.epage=836&rft.pages=836-836&rft.artnum=836&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-28448-9&rft_dat=%3Cproquest_doaj_%3E2628296975%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-debd946612b507b977ca1fbf49cc2dd1fb2c210d67350ec6020ea22fb878459b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627872366&rft_id=info:pmid/35149704&rfr_iscdi=true