Loading…
3d print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize dif...
Saved in:
Published in: | Current directions in biomedical engineering 2019-09, Vol.5 (1), p.235-238 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3d printer. The aim of the study was to produce a 3d print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation. The basis of 3d printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front Advance
from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3d printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used and a final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing. With the help of the thermal simulation results and the subsequent evaluation, it was possible to draw a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It was measured that just 3 mm from the balloon surface into the myocardium the temperature dropped to 25 °C. The simulation model was printed using two 3d printing methods. Both methods, as well as the different printing materials offer different advantages and disadvantages. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model. Three-dimensional heart rhythm models as well as virtual simulations allow very clear visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. |
---|---|
ISSN: | 2364-5504 2364-5504 |
DOI: | 10.1515/cdbme-2019-0060 |