Loading…

Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays

Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker c...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2022-06, Vol.10, p.884271-884271
Main Authors: Chen, Sheng-You, Wu, Abe Y., Lunde, Ruby, Lai, James J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3
cites cdi_FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3
container_end_page 884271
container_issue
container_start_page 884271
container_title Frontiers in bioengineering and biotechnology
container_volume 10
creator Chen, Sheng-You
Wu, Abe Y.
Lunde, Ruby
Lai, James J.
description Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.
doi_str_mv 10.3389/fbioe.2022.884271
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1df84fc179524378b6864d4752a95938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1df84fc179524378b6864d4752a95938</doaj_id><sourcerecordid>2678744159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi0EolXoD-DmI5cEe2yv7QtSKS1UilTExxXLa4-Dy2Yd7E1Q_z3bpkL0MJrRfDwzo5eQ15ythDD2bepzwRUwgJUxEjR_Rk4BbLeU3Kjn_8Un5Ky1W8YYB6WVgZfkRCgN3EhxSn7ctG2ZcqCfawnYWqk0zXY5-n7I44Z-xbHlKR-Q-jHSL36XI32fy9bXX1jpB5wwTLmM9JA9XfsJqx_o1VD-0PPW_F17RV4kPzQ8e_QL8v3q8tvFp-X65uP1xfl6GaSEaSmZSh1aLkTgFhToxAWPOoKSyiqhrYYQNFgVTTC2j9KzHlliURrBfPJiQa6P3Fj8rdvVPB9454rP7iFR6sb5Or85oOMxGZkC11aBFNr0nelklFqBt8oKM7PeHVm7fb_FGHCc5q-eQJ9WxvzTbcrBWW7n-W4GvHkE1PJ7j21y29wCDoMfseybg04bLSWfty0IP7aGWlqrmP6t4czdy-weZHb3MrujzOIvZ_aZ6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678744159</pqid></control><display><type>article</type><title>Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays</title><source>PubMed Central*</source><creator>Chen, Sheng-You ; Wu, Abe Y. ; Lunde, Ruby ; Lai, James J.</creator><creatorcontrib>Chen, Sheng-You ; Wu, Abe Y. ; Lunde, Ruby ; Lai, James J.</creatorcontrib><description>Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2022.884271</identifier><identifier>PMID: 35721843</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>Bioengineering and Biotechnology ; biomarker concentration ; biospecimen processing ; lateral flow tests ; limit of detection ; osmosis ; polymers</subject><ispartof>Frontiers in bioengineering and biotechnology, 2022-06, Vol.10, p.884271-884271</ispartof><rights>Copyright © 2022 Chen, Wu, Lunde and Lai. 2022 Chen, Wu, Lunde and Lai</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3</citedby><cites>FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199386/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199386/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Chen, Sheng-You</creatorcontrib><creatorcontrib>Wu, Abe Y.</creatorcontrib><creatorcontrib>Lunde, Ruby</creatorcontrib><creatorcontrib>Lai, James J.</creatorcontrib><title>Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays</title><title>Frontiers in bioengineering and biotechnology</title><description>Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.</description><subject>Bioengineering and Biotechnology</subject><subject>biomarker concentration</subject><subject>biospecimen processing</subject><subject>lateral flow tests</subject><subject>limit of detection</subject><subject>osmosis</subject><subject>polymers</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhi0EolXoD-DmI5cEe2yv7QtSKS1UilTExxXLa4-Dy2Yd7E1Q_z3bpkL0MJrRfDwzo5eQ15ythDD2bepzwRUwgJUxEjR_Rk4BbLeU3Kjn_8Un5Ky1W8YYB6WVgZfkRCgN3EhxSn7ctG2ZcqCfawnYWqk0zXY5-n7I44Z-xbHlKR-Q-jHSL36XI32fy9bXX1jpB5wwTLmM9JA9XfsJqx_o1VD-0PPW_F17RV4kPzQ8e_QL8v3q8tvFp-X65uP1xfl6GaSEaSmZSh1aLkTgFhToxAWPOoKSyiqhrYYQNFgVTTC2j9KzHlliURrBfPJiQa6P3Fj8rdvVPB9454rP7iFR6sb5Or85oOMxGZkC11aBFNr0nelklFqBt8oKM7PeHVm7fb_FGHCc5q-eQJ9WxvzTbcrBWW7n-W4GvHkE1PJ7j21y29wCDoMfseybg04bLSWfty0IP7aGWlqrmP6t4czdy-weZHb3MrujzOIvZ_aZ6w</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Chen, Sheng-You</creator><creator>Wu, Abe Y.</creator><creator>Lunde, Ruby</creator><creator>Lai, James J.</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220601</creationdate><title>Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays</title><author>Chen, Sheng-You ; Wu, Abe Y. ; Lunde, Ruby ; Lai, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioengineering and Biotechnology</topic><topic>biomarker concentration</topic><topic>biospecimen processing</topic><topic>lateral flow tests</topic><topic>limit of detection</topic><topic>osmosis</topic><topic>polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sheng-You</creatorcontrib><creatorcontrib>Wu, Abe Y.</creatorcontrib><creatorcontrib>Lunde, Ruby</creatorcontrib><creatorcontrib>Lai, James J.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sheng-You</au><au>Wu, Abe Y.</au><au>Lunde, Ruby</au><au>Lai, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>10</volume><spage>884271</spage><epage>884271</epage><pages>884271-884271</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.</abstract><pub>Frontiers Media S.A</pub><pmid>35721843</pmid><doi>10.3389/fbioe.2022.884271</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-4185
ispartof Frontiers in bioengineering and biotechnology, 2022-06, Vol.10, p.884271-884271
issn 2296-4185
2296-4185
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1df84fc179524378b6864d4752a95938
source PubMed Central*
subjects Bioengineering and Biotechnology
biomarker concentration
biospecimen processing
lateral flow tests
limit of detection
osmosis
polymers
title Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20Processor%20for%20Enabling%20Sensitive%20and%20Rapid%20Biomarker%20Detection%20via%20Lateral%20Flow%20Assays&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Chen,%20Sheng-You&rft.date=2022-06-01&rft.volume=10&rft.spage=884271&rft.epage=884271&rft.pages=884271-884271&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2022.884271&rft_dat=%3Cproquest_doaj_%3E2678744159%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-405f6e9133c192527f131d7d25459537972cc7295d8c89bd4a0be0f0d4830afa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678744159&rft_id=info:pmid/35721843&rfr_iscdi=true