Loading…
Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation
Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate t...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.29873-15, Article 29873 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 29873 |
container_title | Scientific reports |
container_volume | 14 |
creator | Hua, Yiwei Tan, Xi Zhang, Jingwen Xu, Ningcong Chen, Ruien Zhou, Shiqing Liu, Shaoqing Li, Kai Chen, Wenyong Luo, Qiulan Li, Yunying |
description | Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential. |
doi_str_mv | 10.1038/s41598-024-80101-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49</doaj_id><sourcerecordid>3135003046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAltiwCXhs5xx7hVDLpVIlJARry7EniQ9JHOyktM_AS-PTlHLKAm9sjf_55qK_KJ4DfQ2UyzdJQKVkSZkoJQUKJTwqjhkVVck4Y48P3kfFaUo7mk_FlAD1tDjiasOYlPy4-HWO1k8dRj-2ZO6QTJ2Jg7GhD623picD2s6MPg0kNOSLcf6amDRH05rekyZEYvoeY9aS2PnRzz5lTAxL25ER558hfj9E3hAzOoLXUy444DjnAlcZ5Mzsw_iseNKYPuHp3X1SfPvw_uvZp_Ly88eLs3eXpeVbOZcMJeTeRQOOKYXQcOEEbmuLgm4N1JLbRrmaKltJubGKVUw4Jwxyu5V1teEnxcXKdcHs9JQ7MfFGB-P1bSDEVps4e9ujBmSQM0FlqBC1qg1VQtV13p9raqEy6-3KmpZ6QGfzTNH0D6APf0bf6TZcaYANMNiITHh1R4jhx4Jp1oNPFvvejBiWpDkIqhgHqLL05T_SXVjimHeVVbyilFOxH4-tKhtDShGb-26A6r139Oodnb2jb72jISe9OJzjPuWPU7KAr4I07b2C8W_t_2B_A1yd0pY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135003046</pqid></control><display><type>article</type><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</creator><creatorcontrib>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</creatorcontrib><description>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-80101-1</identifier><identifier>PMID: 39622883</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 692/308 ; 692/699 ; Allergic rhinitis ; Animals ; Astragalus propinquus - chemistry ; Disease Models, Animal ; Drugs, Chinese Herbal - chemistry ; Drugs, Chinese Herbal - pharmacology ; Hay fever ; Humanities and Social Sciences ; Humans ; Immune response ; Inflammation ; Male ; Mice ; Molecular docking and dynamics ; Molecular Docking Simulation ; multidisciplinary ; Network Pharmacology ; NF-κB protein ; Pharmacology ; Physicochemical properties ; Phytochemicals ; Phytochemicals - chemistry ; Phytochemicals - pharmacology ; Protein interaction ; Protein Interaction Maps - drug effects ; Radix astragali ; Rhinitis ; Rhinitis, Allergic - drug therapy ; Rhinitis, Allergic - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects ; Therapeutic targets ; Toll-like receptors</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.29873-15, Article 29873</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3135003046/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3135003046?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39622883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Yiwei</creatorcontrib><creatorcontrib>Tan, Xi</creatorcontrib><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xu, Ningcong</creatorcontrib><creatorcontrib>Chen, Ruien</creatorcontrib><creatorcontrib>Zhou, Shiqing</creatorcontrib><creatorcontrib>Liu, Shaoqing</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Chen, Wenyong</creatorcontrib><creatorcontrib>Luo, Qiulan</creatorcontrib><creatorcontrib>Li, Yunying</creatorcontrib><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</description><subject>631/114</subject><subject>692/308</subject><subject>692/699</subject><subject>Allergic rhinitis</subject><subject>Animals</subject><subject>Astragalus propinquus - chemistry</subject><subject>Disease Models, Animal</subject><subject>Drugs, Chinese Herbal - chemistry</subject><subject>Drugs, Chinese Herbal - pharmacology</subject><subject>Hay fever</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response</subject><subject>Inflammation</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular docking and dynamics</subject><subject>Molecular Docking Simulation</subject><subject>multidisciplinary</subject><subject>Network Pharmacology</subject><subject>NF-κB protein</subject><subject>Pharmacology</subject><subject>Physicochemical properties</subject><subject>Phytochemicals</subject><subject>Phytochemicals - chemistry</subject><subject>Phytochemicals - pharmacology</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - drug effects</subject><subject>Radix astragali</subject><subject>Rhinitis</subject><subject>Rhinitis, Allergic - drug therapy</subject><subject>Rhinitis, Allergic - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><subject>Therapeutic targets</subject><subject>Toll-like receptors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAltiwCXhs5xx7hVDLpVIlJARry7EniQ9JHOyktM_AS-PTlHLKAm9sjf_55qK_KJ4DfQ2UyzdJQKVkSZkoJQUKJTwqjhkVVck4Y48P3kfFaUo7mk_FlAD1tDjiasOYlPy4-HWO1k8dRj-2ZO6QTJ2Jg7GhD623picD2s6MPg0kNOSLcf6amDRH05rekyZEYvoeY9aS2PnRzz5lTAxL25ER558hfj9E3hAzOoLXUy444DjnAlcZ5Mzsw_iseNKYPuHp3X1SfPvw_uvZp_Ly88eLs3eXpeVbOZcMJeTeRQOOKYXQcOEEbmuLgm4N1JLbRrmaKltJubGKVUw4Jwxyu5V1teEnxcXKdcHs9JQ7MfFGB-P1bSDEVps4e9ujBmSQM0FlqBC1qg1VQtV13p9raqEy6-3KmpZ6QGfzTNH0D6APf0bf6TZcaYANMNiITHh1R4jhx4Jp1oNPFvvejBiWpDkIqhgHqLL05T_SXVjimHeVVbyilFOxH4-tKhtDShGb-26A6r139Oodnb2jb72jISe9OJzjPuWPU7KAr4I07b2C8W_t_2B_A1yd0pY</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Hua, Yiwei</creator><creator>Tan, Xi</creator><creator>Zhang, Jingwen</creator><creator>Xu, Ningcong</creator><creator>Chen, Ruien</creator><creator>Zhou, Shiqing</creator><creator>Liu, Shaoqing</creator><creator>Li, Kai</creator><creator>Chen, Wenyong</creator><creator>Luo, Qiulan</creator><creator>Li, Yunying</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241202</creationdate><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><author>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114</topic><topic>692/308</topic><topic>692/699</topic><topic>Allergic rhinitis</topic><topic>Animals</topic><topic>Astragalus propinquus - chemistry</topic><topic>Disease Models, Animal</topic><topic>Drugs, Chinese Herbal - chemistry</topic><topic>Drugs, Chinese Herbal - pharmacology</topic><topic>Hay fever</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response</topic><topic>Inflammation</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular docking and dynamics</topic><topic>Molecular Docking Simulation</topic><topic>multidisciplinary</topic><topic>Network Pharmacology</topic><topic>NF-κB protein</topic><topic>Pharmacology</topic><topic>Physicochemical properties</topic><topic>Phytochemicals</topic><topic>Phytochemicals - chemistry</topic><topic>Phytochemicals - pharmacology</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - drug effects</topic><topic>Radix astragali</topic><topic>Rhinitis</topic><topic>Rhinitis, Allergic - drug therapy</topic><topic>Rhinitis, Allergic - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><topic>Therapeutic targets</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yiwei</creatorcontrib><creatorcontrib>Tan, Xi</creatorcontrib><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xu, Ningcong</creatorcontrib><creatorcontrib>Chen, Ruien</creatorcontrib><creatorcontrib>Zhou, Shiqing</creatorcontrib><creatorcontrib>Liu, Shaoqing</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Chen, Wenyong</creatorcontrib><creatorcontrib>Luo, Qiulan</creatorcontrib><creatorcontrib>Li, Yunying</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yiwei</au><au>Tan, Xi</au><au>Zhang, Jingwen</au><au>Xu, Ningcong</au><au>Chen, Ruien</au><au>Zhou, Shiqing</au><au>Liu, Shaoqing</au><au>Li, Kai</au><au>Chen, Wenyong</au><au>Luo, Qiulan</au><au>Li, Yunying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-02</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>29873</spage><epage>15</epage><pages>29873-15</pages><artnum>29873</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39622883</pmid><doi>10.1038/s41598-024-80101-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.29873-15, Article 29873 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114 692/308 692/699 Allergic rhinitis Animals Astragalus propinquus - chemistry Disease Models, Animal Drugs, Chinese Herbal - chemistry Drugs, Chinese Herbal - pharmacology Hay fever Humanities and Social Sciences Humans Immune response Inflammation Male Mice Molecular docking and dynamics Molecular Docking Simulation multidisciplinary Network Pharmacology NF-κB protein Pharmacology Physicochemical properties Phytochemicals Phytochemicals - chemistry Phytochemicals - pharmacology Protein interaction Protein Interaction Maps - drug effects Radix astragali Rhinitis Rhinitis, Allergic - drug therapy Rhinitis, Allergic - metabolism Science Science (multidisciplinary) Signal Transduction - drug effects Therapeutic targets Toll-like receptors |
title | Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20pharmacological%20mechanism%20of%20Radix%20astragali%20for%20allergic%20rhinitis%20through%20network%20pharmacology%20and%20experimental%20validation&rft.jtitle=Scientific%20reports&rft.au=Hua,%20Yiwei&rft.date=2024-12-02&rft.volume=14&rft.issue=1&rft.spage=29873&rft.epage=15&rft.pages=29873-15&rft.artnum=29873&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-80101-1&rft_dat=%3Cproquest_doaj_%3E3135003046%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3135003046&rft_id=info:pmid/39622883&rfr_iscdi=true |