Loading…

Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation

Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate t...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-12, Vol.14 (1), p.29873-15, Article 29873
Main Authors: Hua, Yiwei, Tan, Xi, Zhang, Jingwen, Xu, Ningcong, Chen, Ruien, Zhou, Shiqing, Liu, Shaoqing, Li, Kai, Chen, Wenyong, Luo, Qiulan, Li, Yunying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563
container_end_page 15
container_issue 1
container_start_page 29873
container_title Scientific reports
container_volume 14
creator Hua, Yiwei
Tan, Xi
Zhang, Jingwen
Xu, Ningcong
Chen, Ruien
Zhou, Shiqing
Liu, Shaoqing
Li, Kai
Chen, Wenyong
Luo, Qiulan
Li, Yunying
description Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.
doi_str_mv 10.1038/s41598-024-80101-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49</doaj_id><sourcerecordid>3135003046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAltiwCXhs5xx7hVDLpVIlJARry7EniQ9JHOyktM_AS-PTlHLKAm9sjf_55qK_KJ4DfQ2UyzdJQKVkSZkoJQUKJTwqjhkVVck4Y48P3kfFaUo7mk_FlAD1tDjiasOYlPy4-HWO1k8dRj-2ZO6QTJ2Jg7GhD623picD2s6MPg0kNOSLcf6amDRH05rekyZEYvoeY9aS2PnRzz5lTAxL25ER558hfj9E3hAzOoLXUy444DjnAlcZ5Mzsw_iseNKYPuHp3X1SfPvw_uvZp_Ly88eLs3eXpeVbOZcMJeTeRQOOKYXQcOEEbmuLgm4N1JLbRrmaKltJubGKVUw4Jwxyu5V1teEnxcXKdcHs9JQ7MfFGB-P1bSDEVps4e9ujBmSQM0FlqBC1qg1VQtV13p9raqEy6-3KmpZ6QGfzTNH0D6APf0bf6TZcaYANMNiITHh1R4jhx4Jp1oNPFvvejBiWpDkIqhgHqLL05T_SXVjimHeVVbyilFOxH4-tKhtDShGb-26A6r139Oodnb2jb72jISe9OJzjPuWPU7KAr4I07b2C8W_t_2B_A1yd0pY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135003046</pqid></control><display><type>article</type><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</creator><creatorcontrib>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</creatorcontrib><description>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-80101-1</identifier><identifier>PMID: 39622883</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 692/308 ; 692/699 ; Allergic rhinitis ; Animals ; Astragalus propinquus - chemistry ; Disease Models, Animal ; Drugs, Chinese Herbal - chemistry ; Drugs, Chinese Herbal - pharmacology ; Hay fever ; Humanities and Social Sciences ; Humans ; Immune response ; Inflammation ; Male ; Mice ; Molecular docking and dynamics ; Molecular Docking Simulation ; multidisciplinary ; Network Pharmacology ; NF-κB protein ; Pharmacology ; Physicochemical properties ; Phytochemicals ; Phytochemicals - chemistry ; Phytochemicals - pharmacology ; Protein interaction ; Protein Interaction Maps - drug effects ; Radix astragali ; Rhinitis ; Rhinitis, Allergic - drug therapy ; Rhinitis, Allergic - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects ; Therapeutic targets ; Toll-like receptors</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.29873-15, Article 29873</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3135003046/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3135003046?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39622883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Yiwei</creatorcontrib><creatorcontrib>Tan, Xi</creatorcontrib><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xu, Ningcong</creatorcontrib><creatorcontrib>Chen, Ruien</creatorcontrib><creatorcontrib>Zhou, Shiqing</creatorcontrib><creatorcontrib>Liu, Shaoqing</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Chen, Wenyong</creatorcontrib><creatorcontrib>Luo, Qiulan</creatorcontrib><creatorcontrib>Li, Yunying</creatorcontrib><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</description><subject>631/114</subject><subject>692/308</subject><subject>692/699</subject><subject>Allergic rhinitis</subject><subject>Animals</subject><subject>Astragalus propinquus - chemistry</subject><subject>Disease Models, Animal</subject><subject>Drugs, Chinese Herbal - chemistry</subject><subject>Drugs, Chinese Herbal - pharmacology</subject><subject>Hay fever</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response</subject><subject>Inflammation</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular docking and dynamics</subject><subject>Molecular Docking Simulation</subject><subject>multidisciplinary</subject><subject>Network Pharmacology</subject><subject>NF-κB protein</subject><subject>Pharmacology</subject><subject>Physicochemical properties</subject><subject>Phytochemicals</subject><subject>Phytochemicals - chemistry</subject><subject>Phytochemicals - pharmacology</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - drug effects</subject><subject>Radix astragali</subject><subject>Rhinitis</subject><subject>Rhinitis, Allergic - drug therapy</subject><subject>Rhinitis, Allergic - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><subject>Therapeutic targets</subject><subject>Toll-like receptors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAltiwCXhs5xx7hVDLpVIlJARry7EniQ9JHOyktM_AS-PTlHLKAm9sjf_55qK_KJ4DfQ2UyzdJQKVkSZkoJQUKJTwqjhkVVck4Y48P3kfFaUo7mk_FlAD1tDjiasOYlPy4-HWO1k8dRj-2ZO6QTJ2Jg7GhD623picD2s6MPg0kNOSLcf6amDRH05rekyZEYvoeY9aS2PnRzz5lTAxL25ER558hfj9E3hAzOoLXUy444DjnAlcZ5Mzsw_iseNKYPuHp3X1SfPvw_uvZp_Ly88eLs3eXpeVbOZcMJeTeRQOOKYXQcOEEbmuLgm4N1JLbRrmaKltJubGKVUw4Jwxyu5V1teEnxcXKdcHs9JQ7MfFGB-P1bSDEVps4e9ujBmSQM0FlqBC1qg1VQtV13p9raqEy6-3KmpZ6QGfzTNH0D6APf0bf6TZcaYANMNiITHh1R4jhx4Jp1oNPFvvejBiWpDkIqhgHqLL05T_SXVjimHeVVbyilFOxH4-tKhtDShGb-26A6r139Oodnb2jb72jISe9OJzjPuWPU7KAr4I07b2C8W_t_2B_A1yd0pY</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Hua, Yiwei</creator><creator>Tan, Xi</creator><creator>Zhang, Jingwen</creator><creator>Xu, Ningcong</creator><creator>Chen, Ruien</creator><creator>Zhou, Shiqing</creator><creator>Liu, Shaoqing</creator><creator>Li, Kai</creator><creator>Chen, Wenyong</creator><creator>Luo, Qiulan</creator><creator>Li, Yunying</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241202</creationdate><title>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</title><author>Hua, Yiwei ; Tan, Xi ; Zhang, Jingwen ; Xu, Ningcong ; Chen, Ruien ; Zhou, Shiqing ; Liu, Shaoqing ; Li, Kai ; Chen, Wenyong ; Luo, Qiulan ; Li, Yunying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114</topic><topic>692/308</topic><topic>692/699</topic><topic>Allergic rhinitis</topic><topic>Animals</topic><topic>Astragalus propinquus - chemistry</topic><topic>Disease Models, Animal</topic><topic>Drugs, Chinese Herbal - chemistry</topic><topic>Drugs, Chinese Herbal - pharmacology</topic><topic>Hay fever</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response</topic><topic>Inflammation</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular docking and dynamics</topic><topic>Molecular Docking Simulation</topic><topic>multidisciplinary</topic><topic>Network Pharmacology</topic><topic>NF-κB protein</topic><topic>Pharmacology</topic><topic>Physicochemical properties</topic><topic>Phytochemicals</topic><topic>Phytochemicals - chemistry</topic><topic>Phytochemicals - pharmacology</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - drug effects</topic><topic>Radix astragali</topic><topic>Rhinitis</topic><topic>Rhinitis, Allergic - drug therapy</topic><topic>Rhinitis, Allergic - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><topic>Therapeutic targets</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yiwei</creatorcontrib><creatorcontrib>Tan, Xi</creatorcontrib><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xu, Ningcong</creatorcontrib><creatorcontrib>Chen, Ruien</creatorcontrib><creatorcontrib>Zhou, Shiqing</creatorcontrib><creatorcontrib>Liu, Shaoqing</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Chen, Wenyong</creatorcontrib><creatorcontrib>Luo, Qiulan</creatorcontrib><creatorcontrib>Li, Yunying</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yiwei</au><au>Tan, Xi</au><au>Zhang, Jingwen</au><au>Xu, Ningcong</au><au>Chen, Ruien</au><au>Zhou, Shiqing</au><au>Liu, Shaoqing</au><au>Li, Kai</au><au>Chen, Wenyong</au><au>Luo, Qiulan</au><au>Li, Yunying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-02</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>29873</spage><epage>15</epage><pages>29873-15</pages><artnum>29873</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Radix Astragali (RA) has been recognized for its therapeutic potential in allergic rhinitis (AR), yet its potential pharmacological mechanisms remain elusive. This study systematically investigated the physicochemical properties and biological activities of RA’s phytochemicals, aiming to elucidate their targets and mechanisms in AR treatment. We identified 775 potential targets of RA’s key phytochemicals and intersected these with 29,544 AR-related disease targets, pinpointing 747 shared therapeutic targets. A protein-protein interaction network analysis categorized these targets into five subclusters, with TNF, NFKB1, IKBKB, NFKBIA, and CHUK emerging as central nodes. Enrichment analysis revealed their roles in inflammatory and immune responses, particularly through the NF-κB, TNF, IL-17, Toll-like receptor, and NOD-like receptor signaling pathways. Molecular docking and dynamics simulations confirmed the strong binding affinity and stability of RA’s phytochemicals to these targets. In vivo, RA intervention effectively reversed the expression of key inflammatory markers in an IL-13-induced nasal mucosa inflammation model. Our findings suggest that RA’s multitargeted approach involves the modulation of critical inflammatory pathways, highlighting its therapeutic potential.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39622883</pmid><doi>10.1038/s41598-024-80101-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-12, Vol.14 (1), p.29873-15, Article 29873
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1e214ae1983c44b9ba0949bb962dfb49
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114
692/308
692/699
Allergic rhinitis
Animals
Astragalus propinquus - chemistry
Disease Models, Animal
Drugs, Chinese Herbal - chemistry
Drugs, Chinese Herbal - pharmacology
Hay fever
Humanities and Social Sciences
Humans
Immune response
Inflammation
Male
Mice
Molecular docking and dynamics
Molecular Docking Simulation
multidisciplinary
Network Pharmacology
NF-κB protein
Pharmacology
Physicochemical properties
Phytochemicals
Phytochemicals - chemistry
Phytochemicals - pharmacology
Protein interaction
Protein Interaction Maps - drug effects
Radix astragali
Rhinitis
Rhinitis, Allergic - drug therapy
Rhinitis, Allergic - metabolism
Science
Science (multidisciplinary)
Signal Transduction - drug effects
Therapeutic targets
Toll-like receptors
title Deciphering the pharmacological mechanism of Radix astragali for allergic rhinitis through network pharmacology and experimental validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20pharmacological%20mechanism%20of%20Radix%20astragali%20for%20allergic%20rhinitis%20through%20network%20pharmacology%20and%20experimental%20validation&rft.jtitle=Scientific%20reports&rft.au=Hua,%20Yiwei&rft.date=2024-12-02&rft.volume=14&rft.issue=1&rft.spage=29873&rft.epage=15&rft.pages=29873-15&rft.artnum=29873&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-80101-1&rft_dat=%3Cproquest_doaj_%3E3135003046%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-2e818834f1d299e1f34d4e7bce407a1b83cf9db09c5886c92524dd4ae3c78b563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3135003046&rft_id=info:pmid/39622883&rfr_iscdi=true