Loading…

Genetic modification regulates pathogenicity of a fowl adenovirus 4 strain after cell line adaptation (genetic mutation in FAdV-4 lowered pathogenicity)

Fowl adenovirus 4 (FAdV-4) is a major avian virus that induces fatal diseases in chicken such as, hydropericardium and hepatitis. The viral structure consists of hexon, penton, fiber-1, and fiber-2 which are associated with immunopathogenesis. In this study, we investigated the genetic modification...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2023-09, Vol.9 (9), p.e19860-e19860, Article e19860
Main Authors: Yeo, Ji-in, Lee, Rangyeon, Kim, Haneul, Ahn, Somin, Park, Jeongho, Sung, Haan Woo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fowl adenovirus 4 (FAdV-4) is a major avian virus that induces fatal diseases in chicken such as, hydropericardium and hepatitis. The viral structure consists of hexon, penton, fiber-1, and fiber-2 which are associated with immunopathogenesis. In this study, we investigated the genetic modification of a FAdV-4 strain after continuous passages in a cell line and evaluated the pathogenicity associated with mutations. We used the FadV-4 KNU14061 strain, which was isolated from layers in 2014. The virus went through 80 passages in the Leghorn male hepatoma (LMH) cell line. The full genetic sequence was identified, and we found a frameshift in the fiber-2 amino acid sequence after the initial thirty passages. To examine whether the frameshift in the fiber-2 gene affects the pathogenicity in chicken, we inoculated LMH80 (80 times passaged) and LMH10 (10 times passaged) into 3-day-old chickens and examined the pathogenesis. LMH10 infection via intramuscular route induced fatal pathology, but LMH80 did not. Furthermore, LHM80 pre-treatment protected hosts from the LMH10 challenge. Thus, the genetic modification isolated by serial passage lowered pathogenicity and the resulting virus acted as an attenuated vaccine that can be a FAdV-4 vaccine strain candidate.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e19860