Loading…

Treatment of sugar industry effluent using an electrocoagulation process: Process optimization using the response surface methodology

Wastewater of sugar industries has a high pollutant load due to the presence of organic and inorganic materials. Discharge of untreated or partially treated wastewater has a negative effect on the environment and on the life of humans, plants and animals. In our present studies, it was attempted to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Serbian Chemical Society 2020, Vol.85 (10), p.1357-1369
Main Authors: Gondudey, Shreyas, Kumar, Chaudhari, Dharmadhikari, Sandeep, Singh, Thakur
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wastewater of sugar industries has a high pollutant load due to the presence of organic and inorganic materials. Discharge of untreated or partially treated wastewater has a negative effect on the environment and on the life of humans, plants and animals. In our present studies, it was attempted to treat sugar industry effluent (SIE) by an electrocoagulation process (ECP) using mild steel (MS) as the electrode material. For this purpose, three process parameters, namely pH (5?9), current density (j = 34.7?104 A m-2) and treatment time (tR = 20?100 min), were selected to optimize the process using the response surface methodology (RSM). The optimum conditions were pH 6.66, j = = 104 A m-2 and tR = 100 min. The maximum chemical oxygen demand (COD) removal of 75.98 % was achieved under the optimum conditions. The predicted model by RSM showed R2 = 0.9515. After treatment of the effluent, the sludge content in the treated water was separated effectively by filtration and settling.
ISSN:0352-5139
1820-7421
DOI:10.2298/JSC200319037G