Loading…

The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD

A bstract We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N f = 2 + 1 flavors of O ( a ) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic v...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2022-08, Vol.2022 (8), p.220-76, Article 220
Main Authors: Cè, Marco, Gérardin, Antoine, von Hippel, Georg, Meyer, Harvey B., Miura, Kohtaroh, Ottnad, Konstantin, Risch, Andreas, José, Teseo San, Wilhelm, Jonas, Wittig, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43
cites cdi_FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43
container_end_page 76
container_issue 8
container_start_page 220
container_title The journal of high energy physics
container_volume 2022
creator Cè, Marco
Gérardin, Antoine
von Hippel, Georg
Meyer, Harvey B.
Miura, Kohtaroh
Ottnad, Konstantin
Risch, Andreas
José, Teseo San
Wilhelm, Jonas
Wittig, Hartmut
description A bstract We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N f = 2 + 1 flavors of O ( a ) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions Π ¯ γγ and Π ¯ γZ for Euclidean squared momenta Q 2 ≤ 7 GeV 2 . Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function Π ¯ 08 that enters the running of sin 2 θ W . Our results for Π ¯ γγ , Π ¯ γZ and Π ¯ 08 are presented in terms of rational functions for continuous values of Q 2 below 7 GeV 2 . We observe a tension of up to 3 . 5 standard deviation between our lattice results for ∆ α had 5 (− Q 2 ) and estimates based on the R -ratio for space-like momenta in the range 3–7 GeV 2 . The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields ∆ α had 5 M Z 2 = 0 . 02773(15) and agrees with results based on the R -ratio within the quoted uncertainties.
doi_str_mv 10.1007/JHEP08(2022)220
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1e39eb0b205348aa80aaf42dc94e35ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e39eb0b205348aa80aaf42dc94e35ec</doaj_id><sourcerecordid>2848485414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43</originalsourceid><addsrcrecordid>eNp1Uc9LwzAULqLgnJ69FrzoYe4lTdf0KHO6yUCFeQ5v6UvX2TUzbVH_ezMruovk8ML7fj34guCcwTUDSIYP08kTyEsOnF9xDgdBjwFPB1Ik6eHe_zg4qes1AItZCr3ALFYUrjBztip06NqqKqo8tCZs_J5K0o2zG8wrajysbbstdzhW2T7hnfA13BQfHZSXFBqvCktsvIrC5_HtaXBksKzp7Gf2g5e7yWI8Hcwf72fjm_lAC5k0g3hkmEwygshIjjoBw5HHPGGAkdYpB1pmmRglkUhHCXHmQcEYN5lkAmkpon4w63wzi2u1dcUG3aeyWKjvhXW5QuePKkkxilJawpJDHAmJKAHRCJ7pVFAUk_ZeF53X1tm3lupGrW3rKn--4lL457N3icOOpZ2ta0fmN5WB2hWjumLUrhjli_EK6BS1Z1Y5uT_f_yRfVPWPnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848485414</pqid></control><display><type>article</type><title>The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Cè, Marco ; Gérardin, Antoine ; von Hippel, Georg ; Meyer, Harvey B. ; Miura, Kohtaroh ; Ottnad, Konstantin ; Risch, Andreas ; José, Teseo San ; Wilhelm, Jonas ; Wittig, Hartmut</creator><creatorcontrib>Cè, Marco ; Gérardin, Antoine ; von Hippel, Georg ; Meyer, Harvey B. ; Miura, Kohtaroh ; Ottnad, Konstantin ; Risch, Andreas ; José, Teseo San ; Wilhelm, Jonas ; Wittig, Hartmut</creatorcontrib><description>A bstract We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N f = 2 + 1 flavors of O ( a ) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions Π ¯ γγ and Π ¯ γZ for Euclidean squared momenta Q 2 ≤ 7 GeV 2 . Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function Π ¯ 08 that enters the running of sin 2 θ W . Our results for Π ¯ γγ , Π ¯ γZ and Π ¯ 08 are presented in terms of rational functions for continuous values of Q 2 below 7 GeV 2 . We observe a tension of up to 3 . 5 standard deviation between our lattice results for ∆ α had 5 (− Q 2 ) and estimates based on the R -ratio for space-like momenta in the range 3–7 GeV 2 . The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields ∆ α had 5 M Z 2 = 0 . 02773(15) and agrees with results based on the R -ratio within the quoted uncertainties.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2022)220</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Continuity (mathematics) ; Couplings ; Decomposition ; Electromagnetic coupling ; Elementary Particles ; Fermions ; Flavor (particle physics) ; Hadronic Spectroscopy ; High energy physics ; Physics ; Physics and Astronomy ; Pions ; Quantum chromodynamics ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quarks ; Rational functions ; Regular Article - Theoretical Physics ; Relativity Theory ; Standard Model Parameters ; String Theory ; Structure and Interactions ; Vector currents</subject><ispartof>The journal of high energy physics, 2022-08, Vol.2022 (8), p.220-76, Article 220</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43</citedby><cites>FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43</cites><orcidid>0000-0001-5056-3977 ; 0000-0001-6906-6823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848485414/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848485414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Cè, Marco</creatorcontrib><creatorcontrib>Gérardin, Antoine</creatorcontrib><creatorcontrib>von Hippel, Georg</creatorcontrib><creatorcontrib>Meyer, Harvey B.</creatorcontrib><creatorcontrib>Miura, Kohtaroh</creatorcontrib><creatorcontrib>Ottnad, Konstantin</creatorcontrib><creatorcontrib>Risch, Andreas</creatorcontrib><creatorcontrib>José, Teseo San</creatorcontrib><creatorcontrib>Wilhelm, Jonas</creatorcontrib><creatorcontrib>Wittig, Hartmut</creatorcontrib><title>The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N f = 2 + 1 flavors of O ( a ) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions Π ¯ γγ and Π ¯ γZ for Euclidean squared momenta Q 2 ≤ 7 GeV 2 . Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function Π ¯ 08 that enters the running of sin 2 θ W . Our results for Π ¯ γγ , Π ¯ γZ and Π ¯ 08 are presented in terms of rational functions for continuous values of Q 2 below 7 GeV 2 . We observe a tension of up to 3 . 5 standard deviation between our lattice results for ∆ α had 5 (− Q 2 ) and estimates based on the R -ratio for space-like momenta in the range 3–7 GeV 2 . The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields ∆ α had 5 M Z 2 = 0 . 02773(15) and agrees with results based on the R -ratio within the quoted uncertainties.</description><subject>Classical and Quantum Gravitation</subject><subject>Continuity (mathematics)</subject><subject>Couplings</subject><subject>Decomposition</subject><subject>Electromagnetic coupling</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Flavor (particle physics)</subject><subject>Hadronic Spectroscopy</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quarks</subject><subject>Rational functions</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Standard Model Parameters</subject><subject>String Theory</subject><subject>Structure and Interactions</subject><subject>Vector currents</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uc9LwzAULqLgnJ69FrzoYe4lTdf0KHO6yUCFeQ5v6UvX2TUzbVH_ezMruovk8ML7fj34guCcwTUDSIYP08kTyEsOnF9xDgdBjwFPB1Ik6eHe_zg4qes1AItZCr3ALFYUrjBztip06NqqKqo8tCZs_J5K0o2zG8wrajysbbstdzhW2T7hnfA13BQfHZSXFBqvCktsvIrC5_HtaXBksKzp7Gf2g5e7yWI8Hcwf72fjm_lAC5k0g3hkmEwygshIjjoBw5HHPGGAkdYpB1pmmRglkUhHCXHmQcEYN5lkAmkpon4w63wzi2u1dcUG3aeyWKjvhXW5QuePKkkxilJawpJDHAmJKAHRCJ7pVFAUk_ZeF53X1tm3lupGrW3rKn--4lL457N3icOOpZ2ta0fmN5WB2hWjumLUrhjli_EK6BS1Z1Y5uT_f_yRfVPWPnA</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Cè, Marco</creator><creator>Gérardin, Antoine</creator><creator>von Hippel, Georg</creator><creator>Meyer, Harvey B.</creator><creator>Miura, Kohtaroh</creator><creator>Ottnad, Konstantin</creator><creator>Risch, Andreas</creator><creator>José, Teseo San</creator><creator>Wilhelm, Jonas</creator><creator>Wittig, Hartmut</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5056-3977</orcidid><orcidid>https://orcid.org/0000-0001-6906-6823</orcidid></search><sort><creationdate>20220822</creationdate><title>The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD</title><author>Cè, Marco ; Gérardin, Antoine ; von Hippel, Georg ; Meyer, Harvey B. ; Miura, Kohtaroh ; Ottnad, Konstantin ; Risch, Andreas ; José, Teseo San ; Wilhelm, Jonas ; Wittig, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Continuity (mathematics)</topic><topic>Couplings</topic><topic>Decomposition</topic><topic>Electromagnetic coupling</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Flavor (particle physics)</topic><topic>Hadronic Spectroscopy</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quarks</topic><topic>Rational functions</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Standard Model Parameters</topic><topic>String Theory</topic><topic>Structure and Interactions</topic><topic>Vector currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cè, Marco</creatorcontrib><creatorcontrib>Gérardin, Antoine</creatorcontrib><creatorcontrib>von Hippel, Georg</creatorcontrib><creatorcontrib>Meyer, Harvey B.</creatorcontrib><creatorcontrib>Miura, Kohtaroh</creatorcontrib><creatorcontrib>Ottnad, Konstantin</creatorcontrib><creatorcontrib>Risch, Andreas</creatorcontrib><creatorcontrib>José, Teseo San</creatorcontrib><creatorcontrib>Wilhelm, Jonas</creatorcontrib><creatorcontrib>Wittig, Hartmut</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cè, Marco</au><au>Gérardin, Antoine</au><au>von Hippel, Georg</au><au>Meyer, Harvey B.</au><au>Miura, Kohtaroh</au><au>Ottnad, Konstantin</au><au>Risch, Andreas</au><au>José, Teseo San</au><au>Wilhelm, Jonas</au><au>Wittig, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-08-22</date><risdate>2022</risdate><volume>2022</volume><issue>8</issue><spage>220</spage><epage>76</epage><pages>220-76</pages><artnum>220</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with N f = 2 + 1 flavors of O ( a ) improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and –disconnected contributions to the hadronic vacuum polarization (HVP) functions Π ¯ γγ and Π ¯ γZ for Euclidean squared momenta Q 2 ≤ 7 GeV 2 . Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the SU(3)-flavor-suppressed HVP function Π ¯ 08 that enters the running of sin 2 θ W . Our results for Π ¯ γγ , Π ¯ γZ and Π ¯ 08 are presented in terms of rational functions for continuous values of Q 2 below 7 GeV 2 . We observe a tension of up to 3 . 5 standard deviation between our lattice results for ∆ α had 5 (− Q 2 ) and estimates based on the R -ratio for space-like momenta in the range 3–7 GeV 2 . The tension is, however, strongly diminished when translating our result to the Z pole, by employing the Euclidean split technique and perturbative QCD, which yields ∆ α had 5 M Z 2 = 0 . 02773(15) and agrees with results based on the R -ratio within the quoted uncertainties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2022)220</doi><tpages>76</tpages><orcidid>https://orcid.org/0000-0001-5056-3977</orcidid><orcidid>https://orcid.org/0000-0001-6906-6823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2022-08, Vol.2022 (8), p.220-76, Article 220
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1e39eb0b205348aa80aaf42dc94e35ec
source Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest)
subjects Classical and Quantum Gravitation
Continuity (mathematics)
Couplings
Decomposition
Electromagnetic coupling
Elementary Particles
Fermions
Flavor (particle physics)
Hadronic Spectroscopy
High energy physics
Physics
Physics and Astronomy
Pions
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Rational functions
Regular Article - Theoretical Physics
Relativity Theory
Standard Model Parameters
String Theory
Structure and Interactions
Vector currents
title The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hadronic%20running%20of%20the%20electromagnetic%20coupling%20and%20the%20electroweak%20mixing%20angle%20from%20lattice%20QCD&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=C%C3%A8,%20Marco&rft.date=2022-08-22&rft.volume=2022&rft.issue=8&rft.spage=220&rft.epage=76&rft.pages=220-76&rft.artnum=220&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2022)220&rft_dat=%3Cproquest_doaj_%3E2848485414%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-56f187de03f82ac70f2a252710a3cc920ebdd46734967e21a254112fd814aeb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848485414&rft_id=info:pmid/&rfr_iscdi=true