Loading…

New density-independent interactions for nuclear structure calculations

We present a new two-body finite-range and momentum-dependent but density-independent effective interaction, which can be interpreted as a regularized zero-range force. We show that no three-body or density-dependent terms are needed for a correct description of saturation properties in infinite mat...

Full description

Saved in:
Bibliographic Details
Main Authors: Bennaceur, K., Dobaczewski, J., Raimondi, F.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new two-body finite-range and momentum-dependent but density-independent effective interaction, which can be interpreted as a regularized zero-range force. We show that no three-body or density-dependent terms are needed for a correct description of saturation properties in infinite matter, that is, on the level of low-energy density functional, the physical three-body effects can be efficiently absorbed in effective two-body terms. The new interaction gives a satisfying equation of state of nuclear matter and opens up extremely interesting perspectives for the mean-field and beyond-mean-field descriptions of atomic nuclei.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/20146602031