Loading…
A Self-Propelled Linear Piezoelectric Micro-Actuator Inspired by the Movement Patterns of Aquatic Beetles
The locomotion mechanisms and structural characteristics of insects in nature offer new perspectives and solutions for designing miniature actuators. Inspired by the underwater movement of aquatic beetles, this paper presents a bidirectional self-propelled linear piezoelectric micro-actuator (SLPMA)...
Saved in:
Published in: | Micromachines (Basel) 2024-09, Vol.15 (10), p.1197 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The locomotion mechanisms and structural characteristics of insects in nature offer new perspectives and solutions for designing miniature actuators. Inspired by the underwater movement of aquatic beetles, this paper presents a bidirectional self-propelled linear piezoelectric micro-actuator (SLPMA), whose maximum size in three dimensions is currently recognized as the smallest known of the self-propelled piezoelectric linear micro-actuators. Through the superposition of two bending vibration modes, the proposed actuator generates an elliptical motion trajectory at its driving feet. The size was determined as 15 mm × 12.8 mm × 5 mm after finite element analysis (FEA) through modal and transient simulations. A mathematical model was established to analyze and validate the feasibility of the proposed design. Finally, a prototype was fabricated, and an experimental platform was constructed to test the driving characteristics of the SLPMA. The experimental results showed that the maximum no-load velocity and maximum carrying load of the prototype in the forward motion were 17.3 mm/s and 14.8 mN, respectively, while those in the backward motion were 20.5 mm/s and 15.9 mN, respectively. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi15101197 |