Loading…

SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2

Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mic...

Full description

Saved in:
Bibliographic Details
Published in:Cell communication and signaling 2020-09, Vol.18 (1), p.147-13, Article 147
Main Authors: Barroso, Emma, Rodríguez-Rodríguez, Rosalía, Zarei, Mohammad, Pizarro-Degado, Javier, Planavila, Anna, Palomer, Xavier, Villarroya, Francesc, Vázquez-Carrera, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803
cites cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803
container_end_page 13
container_issue 1
container_start_page 147
container_title Cell communication and signaling
container_volume 18
creator Barroso, Emma
Rodríguez-Rodríguez, Rosalía
Zarei, Mohammad
Pizarro-Degado, Javier
Planavila, Anna
Palomer, Xavier
Villarroya, Francesc
Vázquez-Carrera, Manuel
description Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). Studies were conducted in wild-type (WT) and Sirt3 mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. Sirt3 mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3 mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.
doi_str_mv 10.1186/s12964-020-00640-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201</doaj_id><sourcerecordid>2444119130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</originalsourceid><addsrcrecordid>eNpVkd9uFCEUhyfGxtbqC3hhSLyelgMMAzcmZrXtJJtqtCbeEWBgl812ZgWm7T6WL-IzyXZr097w73x8HPKrqneATwAEP01AJGc1JrjGmDNcixfVEbBW1ALg18sn68PqdUorjAlrWPuqOqREAqG0OarSj-77FUW988EGN9gtcnfaumh0dgl5nfMWrcONi8hsUdm5YdI5DAuUlw5ddGfw90897751lwjQRuflrS7Y0KMw2Oh02pGzz5QXPI7TYokuoydvqgOv18m9fZiPq59nX65mF_X863k3-zSvLZM815w7Y4kRrIy2aT2zxgOzjZHUAmZc9xSs7b0UraVUy74HC32hGkM5F5geV93e2496pTYxXOu4VaMO6v5gjAulYw527RS4Fgwh3HFDmWRYut5ir4kAzyXBUFwf967NZK5L0Q056vUz6fPKEJZqMd6olgkBTBTBhwdBHH9PLmW1Gqc4lP8rwhgDkEB3LZM9ZeOYUnT-8QXAahe62oeuSujqPnS1U79_2tvjlf8p0398yaiE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444119130</pqid></control><display><type>article</type><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</creator><creatorcontrib>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</creatorcontrib><description>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). Studies were conducted in wild-type (WT) and Sirt3 mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. Sirt3 mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3 mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</description><identifier>ISSN: 1478-811X</identifier><identifier>EISSN: 1478-811X</identifier><identifier>DOI: 10.1186/s12964-020-00640-8</identifier><identifier>PMID: 32912335</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Binding sites ; CD36 ; CD36 antigen ; Fatty acids ; Fatty liver ; Hepatic steatosis ; Hepatoma ; High fat diet ; Homeostasis ; Hypoxia-inducible factor 1a ; Lipids ; Lipoproteins (very low density) ; Liver ; Localization ; Mitochondria ; NAD ; NQO1 ; Nrf2 ; Oxidation ; Palmitic acid ; Peroxisome proliferator-activated receptors ; Proteins ; siRNA ; Sirt3 ; Steatosis ; Triglycerides ; VLDLR</subject><ispartof>Cell communication and signaling, 2020-09, Vol.18 (1), p.147-13, Article 147</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</citedby><cites>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</cites><orcidid>0000-0001-7138-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2444119130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32912335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barroso, Emma</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, Rosalía</creatorcontrib><creatorcontrib>Zarei, Mohammad</creatorcontrib><creatorcontrib>Pizarro-Degado, Javier</creatorcontrib><creatorcontrib>Planavila, Anna</creatorcontrib><creatorcontrib>Palomer, Xavier</creatorcontrib><creatorcontrib>Villarroya, Francesc</creatorcontrib><creatorcontrib>Vázquez-Carrera, Manuel</creatorcontrib><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><title>Cell communication and signaling</title><addtitle>Cell Commun Signal</addtitle><description>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). Studies were conducted in wild-type (WT) and Sirt3 mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. Sirt3 mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3 mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</description><subject>Binding sites</subject><subject>CD36</subject><subject>CD36 antigen</subject><subject>Fatty acids</subject><subject>Fatty liver</subject><subject>Hepatic steatosis</subject><subject>Hepatoma</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Lipids</subject><subject>Lipoproteins (very low density)</subject><subject>Liver</subject><subject>Localization</subject><subject>Mitochondria</subject><subject>NAD</subject><subject>NQO1</subject><subject>Nrf2</subject><subject>Oxidation</subject><subject>Palmitic acid</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Proteins</subject><subject>siRNA</subject><subject>Sirt3</subject><subject>Steatosis</subject><subject>Triglycerides</subject><subject>VLDLR</subject><issn>1478-811X</issn><issn>1478-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd9uFCEUhyfGxtbqC3hhSLyelgMMAzcmZrXtJJtqtCbeEWBgl812ZgWm7T6WL-IzyXZr097w73x8HPKrqneATwAEP01AJGc1JrjGmDNcixfVEbBW1ALg18sn68PqdUorjAlrWPuqOqREAqG0OarSj-77FUW988EGN9gtcnfaumh0dgl5nfMWrcONi8hsUdm5YdI5DAuUlw5ddGfw90897751lwjQRuflrS7Y0KMw2Oh02pGzz5QXPI7TYokuoydvqgOv18m9fZiPq59nX65mF_X863k3-zSvLZM815w7Y4kRrIy2aT2zxgOzjZHUAmZc9xSs7b0UraVUy74HC32hGkM5F5geV93e2496pTYxXOu4VaMO6v5gjAulYw527RS4Fgwh3HFDmWRYut5ir4kAzyXBUFwf967NZK5L0Q056vUz6fPKEJZqMd6olgkBTBTBhwdBHH9PLmW1Gqc4lP8rwhgDkEB3LZM9ZeOYUnT-8QXAahe62oeuSujqPnS1U79_2tvjlf8p0398yaiE</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Barroso, Emma</creator><creator>Rodríguez-Rodríguez, Rosalía</creator><creator>Zarei, Mohammad</creator><creator>Pizarro-Degado, Javier</creator><creator>Planavila, Anna</creator><creator>Palomer, Xavier</creator><creator>Villarroya, Francesc</creator><creator>Vázquez-Carrera, Manuel</creator><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7138-8207</orcidid></search><sort><creationdate>20200910</creationdate><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><author>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding sites</topic><topic>CD36</topic><topic>CD36 antigen</topic><topic>Fatty acids</topic><topic>Fatty liver</topic><topic>Hepatic steatosis</topic><topic>Hepatoma</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Lipids</topic><topic>Lipoproteins (very low density)</topic><topic>Liver</topic><topic>Localization</topic><topic>Mitochondria</topic><topic>NAD</topic><topic>NQO1</topic><topic>Nrf2</topic><topic>Oxidation</topic><topic>Palmitic acid</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Proteins</topic><topic>siRNA</topic><topic>Sirt3</topic><topic>Steatosis</topic><topic>Triglycerides</topic><topic>VLDLR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso, Emma</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, Rosalía</creatorcontrib><creatorcontrib>Zarei, Mohammad</creatorcontrib><creatorcontrib>Pizarro-Degado, Javier</creatorcontrib><creatorcontrib>Planavila, Anna</creatorcontrib><creatorcontrib>Palomer, Xavier</creatorcontrib><creatorcontrib>Villarroya, Francesc</creatorcontrib><creatorcontrib>Vázquez-Carrera, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell communication and signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso, Emma</au><au>Rodríguez-Rodríguez, Rosalía</au><au>Zarei, Mohammad</au><au>Pizarro-Degado, Javier</au><au>Planavila, Anna</au><au>Palomer, Xavier</au><au>Villarroya, Francesc</au><au>Vázquez-Carrera, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</atitle><jtitle>Cell communication and signaling</jtitle><addtitle>Cell Commun Signal</addtitle><date>2020-09-10</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>147</spage><epage>13</epage><pages>147-13</pages><artnum>147</artnum><issn>1478-811X</issn><eissn>1478-811X</eissn><abstract>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). Studies were conducted in wild-type (WT) and Sirt3 mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. Sirt3 mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3 mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>32912335</pmid><doi>10.1186/s12964-020-00640-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7138-8207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-811X
ispartof Cell communication and signaling, 2020-09, Vol.18 (1), p.147-13, Article 147
issn 1478-811X
1478-811X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201
source Publicly Available Content Database; PubMed Central
subjects Binding sites
CD36
CD36 antigen
Fatty acids
Fatty liver
Hepatic steatosis
Hepatoma
High fat diet
Homeostasis
Hypoxia-inducible factor 1a
Lipids
Lipoproteins (very low density)
Liver
Localization
Mitochondria
NAD
NQO1
Nrf2
Oxidation
Palmitic acid
Peroxisome proliferator-activated receptors
Proteins
siRNA
Sirt3
Steatosis
Triglycerides
VLDLR
title SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRT3%20deficiency%20exacerbates%20fatty%20liver%20by%20attenuating%20the%20HIF1%CE%B1-LIPIN%201%20pathway%20and%20increasing%20CD36%20through%20Nrf2&rft.jtitle=Cell%20communication%20and%20signaling&rft.au=Barroso,%20Emma&rft.date=2020-09-10&rft.volume=18&rft.issue=1&rft.spage=147&rft.epage=13&rft.pages=147-13&rft.artnum=147&rft.issn=1478-811X&rft.eissn=1478-811X&rft_id=info:doi/10.1186/s12964-020-00640-8&rft_dat=%3Cproquest_doaj_%3E2444119130%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444119130&rft_id=info:pmid/32912335&rfr_iscdi=true