Loading…
SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2
Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD -dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mic...
Saved in:
Published in: | Cell communication and signaling 2020-09, Vol.18 (1), p.147-13, Article 147 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 147 |
container_title | Cell communication and signaling |
container_volume | 18 |
creator | Barroso, Emma Rodríguez-Rodríguez, Rosalía Zarei, Mohammad Pizarro-Degado, Javier Planavila, Anna Palomer, Xavier Villarroya, Francesc Vázquez-Carrera, Manuel |
description | Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD
-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD).
Studies were conducted in wild-type (WT) and Sirt3
mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells.
Sirt3
mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3
mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385.
These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract. |
doi_str_mv | 10.1186/s12964-020-00640-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201</doaj_id><sourcerecordid>2444119130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</originalsourceid><addsrcrecordid>eNpVkd9uFCEUhyfGxtbqC3hhSLyelgMMAzcmZrXtJJtqtCbeEWBgl812ZgWm7T6WL-IzyXZr097w73x8HPKrqneATwAEP01AJGc1JrjGmDNcixfVEbBW1ALg18sn68PqdUorjAlrWPuqOqREAqG0OarSj-77FUW988EGN9gtcnfaumh0dgl5nfMWrcONi8hsUdm5YdI5DAuUlw5ddGfw90897751lwjQRuflrS7Y0KMw2Oh02pGzz5QXPI7TYokuoydvqgOv18m9fZiPq59nX65mF_X863k3-zSvLZM815w7Y4kRrIy2aT2zxgOzjZHUAmZc9xSs7b0UraVUy74HC32hGkM5F5geV93e2496pTYxXOu4VaMO6v5gjAulYw527RS4Fgwh3HFDmWRYut5ir4kAzyXBUFwf967NZK5L0Q056vUz6fPKEJZqMd6olgkBTBTBhwdBHH9PLmW1Gqc4lP8rwhgDkEB3LZM9ZeOYUnT-8QXAahe62oeuSujqPnS1U79_2tvjlf8p0398yaiE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444119130</pqid></control><display><type>article</type><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</creator><creatorcontrib>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</creatorcontrib><description>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD
-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD).
Studies were conducted in wild-type (WT) and Sirt3
mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells.
Sirt3
mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3
mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385.
These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</description><identifier>ISSN: 1478-811X</identifier><identifier>EISSN: 1478-811X</identifier><identifier>DOI: 10.1186/s12964-020-00640-8</identifier><identifier>PMID: 32912335</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Binding sites ; CD36 ; CD36 antigen ; Fatty acids ; Fatty liver ; Hepatic steatosis ; Hepatoma ; High fat diet ; Homeostasis ; Hypoxia-inducible factor 1a ; Lipids ; Lipoproteins (very low density) ; Liver ; Localization ; Mitochondria ; NAD ; NQO1 ; Nrf2 ; Oxidation ; Palmitic acid ; Peroxisome proliferator-activated receptors ; Proteins ; siRNA ; Sirt3 ; Steatosis ; Triglycerides ; VLDLR</subject><ispartof>Cell communication and signaling, 2020-09, Vol.18 (1), p.147-13, Article 147</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</citedby><cites>FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</cites><orcidid>0000-0001-7138-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488148/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2444119130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32912335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barroso, Emma</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, Rosalía</creatorcontrib><creatorcontrib>Zarei, Mohammad</creatorcontrib><creatorcontrib>Pizarro-Degado, Javier</creatorcontrib><creatorcontrib>Planavila, Anna</creatorcontrib><creatorcontrib>Palomer, Xavier</creatorcontrib><creatorcontrib>Villarroya, Francesc</creatorcontrib><creatorcontrib>Vázquez-Carrera, Manuel</creatorcontrib><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><title>Cell communication and signaling</title><addtitle>Cell Commun Signal</addtitle><description>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD
-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD).
Studies were conducted in wild-type (WT) and Sirt3
mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells.
Sirt3
mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3
mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385.
These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</description><subject>Binding sites</subject><subject>CD36</subject><subject>CD36 antigen</subject><subject>Fatty acids</subject><subject>Fatty liver</subject><subject>Hepatic steatosis</subject><subject>Hepatoma</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Lipids</subject><subject>Lipoproteins (very low density)</subject><subject>Liver</subject><subject>Localization</subject><subject>Mitochondria</subject><subject>NAD</subject><subject>NQO1</subject><subject>Nrf2</subject><subject>Oxidation</subject><subject>Palmitic acid</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Proteins</subject><subject>siRNA</subject><subject>Sirt3</subject><subject>Steatosis</subject><subject>Triglycerides</subject><subject>VLDLR</subject><issn>1478-811X</issn><issn>1478-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd9uFCEUhyfGxtbqC3hhSLyelgMMAzcmZrXtJJtqtCbeEWBgl812ZgWm7T6WL-IzyXZr097w73x8HPKrqneATwAEP01AJGc1JrjGmDNcixfVEbBW1ALg18sn68PqdUorjAlrWPuqOqREAqG0OarSj-77FUW988EGN9gtcnfaumh0dgl5nfMWrcONi8hsUdm5YdI5DAuUlw5ddGfw90897751lwjQRuflrS7Y0KMw2Oh02pGzz5QXPI7TYokuoydvqgOv18m9fZiPq59nX65mF_X863k3-zSvLZM815w7Y4kRrIy2aT2zxgOzjZHUAmZc9xSs7b0UraVUy74HC32hGkM5F5geV93e2496pTYxXOu4VaMO6v5gjAulYw527RS4Fgwh3HFDmWRYut5ir4kAzyXBUFwf967NZK5L0Q056vUz6fPKEJZqMd6olgkBTBTBhwdBHH9PLmW1Gqc4lP8rwhgDkEB3LZM9ZeOYUnT-8QXAahe62oeuSujqPnS1U79_2tvjlf8p0398yaiE</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Barroso, Emma</creator><creator>Rodríguez-Rodríguez, Rosalía</creator><creator>Zarei, Mohammad</creator><creator>Pizarro-Degado, Javier</creator><creator>Planavila, Anna</creator><creator>Palomer, Xavier</creator><creator>Villarroya, Francesc</creator><creator>Vázquez-Carrera, Manuel</creator><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7138-8207</orcidid></search><sort><creationdate>20200910</creationdate><title>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</title><author>Barroso, Emma ; Rodríguez-Rodríguez, Rosalía ; Zarei, Mohammad ; Pizarro-Degado, Javier ; Planavila, Anna ; Palomer, Xavier ; Villarroya, Francesc ; Vázquez-Carrera, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding sites</topic><topic>CD36</topic><topic>CD36 antigen</topic><topic>Fatty acids</topic><topic>Fatty liver</topic><topic>Hepatic steatosis</topic><topic>Hepatoma</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Lipids</topic><topic>Lipoproteins (very low density)</topic><topic>Liver</topic><topic>Localization</topic><topic>Mitochondria</topic><topic>NAD</topic><topic>NQO1</topic><topic>Nrf2</topic><topic>Oxidation</topic><topic>Palmitic acid</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Proteins</topic><topic>siRNA</topic><topic>Sirt3</topic><topic>Steatosis</topic><topic>Triglycerides</topic><topic>VLDLR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso, Emma</creatorcontrib><creatorcontrib>Rodríguez-Rodríguez, Rosalía</creatorcontrib><creatorcontrib>Zarei, Mohammad</creatorcontrib><creatorcontrib>Pizarro-Degado, Javier</creatorcontrib><creatorcontrib>Planavila, Anna</creatorcontrib><creatorcontrib>Palomer, Xavier</creatorcontrib><creatorcontrib>Villarroya, Francesc</creatorcontrib><creatorcontrib>Vázquez-Carrera, Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell communication and signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso, Emma</au><au>Rodríguez-Rodríguez, Rosalía</au><au>Zarei, Mohammad</au><au>Pizarro-Degado, Javier</au><au>Planavila, Anna</au><au>Palomer, Xavier</au><au>Villarroya, Francesc</au><au>Vázquez-Carrera, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2</atitle><jtitle>Cell communication and signaling</jtitle><addtitle>Cell Commun Signal</addtitle><date>2020-09-10</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>147</spage><epage>13</epage><pages>147-13</pages><artnum>147</artnum><issn>1478-811X</issn><eissn>1478-811X</eissn><abstract>Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD
-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD).
Studies were conducted in wild-type (WT) and Sirt3
mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells.
Sirt3
mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3
mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385.
These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>32912335</pmid><doi>10.1186/s12964-020-00640-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7138-8207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-811X |
ispartof | Cell communication and signaling, 2020-09, Vol.18 (1), p.147-13, Article 147 |
issn | 1478-811X 1478-811X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1e71b226e6b349409edc0fa281f69201 |
source | Publicly Available Content Database; PubMed Central |
subjects | Binding sites CD36 CD36 antigen Fatty acids Fatty liver Hepatic steatosis Hepatoma High fat diet Homeostasis Hypoxia-inducible factor 1a Lipids Lipoproteins (very low density) Liver Localization Mitochondria NAD NQO1 Nrf2 Oxidation Palmitic acid Peroxisome proliferator-activated receptors Proteins siRNA Sirt3 Steatosis Triglycerides VLDLR |
title | SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRT3%20deficiency%20exacerbates%20fatty%20liver%20by%20attenuating%20the%20HIF1%CE%B1-LIPIN%201%20pathway%20and%20increasing%20CD36%20through%20Nrf2&rft.jtitle=Cell%20communication%20and%20signaling&rft.au=Barroso,%20Emma&rft.date=2020-09-10&rft.volume=18&rft.issue=1&rft.spage=147&rft.epage=13&rft.pages=147-13&rft.artnum=147&rft.issn=1478-811X&rft.eissn=1478-811X&rft_id=info:doi/10.1186/s12964-020-00640-8&rft_dat=%3Cproquest_doaj_%3E2444119130%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-66ebc2b84bc2c57f4cbf14c5b93c1046ad31ccdf987c33a9dd1c1d4cb5b366803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444119130&rft_id=info:pmid/32912335&rfr_iscdi=true |