Loading…

Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques

The optimal location and sizing of distributed generation is a suitable option for improving the operation of electric systems. This paper proposes a parallel implementation of the Population-Based Incremental Learning (PBIL) algorithm to locate distributed generators (DGs), and the use of Particle...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2018-04, Vol.11 (4), p.1018
Main Authors: Grisales-Noreña, Luis, Gonzalez Montoya, Daniel, Ramos-Paja, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The optimal location and sizing of distributed generation is a suitable option for improving the operation of electric systems. This paper proposes a parallel implementation of the Population-Based Incremental Learning (PBIL) algorithm to locate distributed generators (DGs), and the use of Particle Swarm Optimization (PSO) to define the size those devices. The resulting method is a master-slave hybrid approach based on both the parallel PBIL (PPBIL) algorithm and the PSO, which reduces the computation time in comparison with other techniques commonly used to address this problem. Moreover, the new hybrid method also reduces the active power losses and improves the nodal voltage profiles. In order to verify the performance of the new method, test systems with 33 and 69 buses are implemented in Matlab, using Matpower, for evaluating multiple cases. Finally, the proposed method is contrasted with the Loss Sensitivity Factor (LSF), a Genetic Algorithm (GA) and a Parallel Monte-Carlo algorithm. The results demonstrate that the proposed PPBIL-PSO method provides the best balance between processing time, voltage profiles and reduction of power losses.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11041018