Loading…

Orientation-Dependent High-Order Harmonic Generation from Monolayer ZnO

Solid-state high-order harmonic generation (HHG) now is a strong tool for detecting target properties, like band structure, Berry curvature and transition dipole moments (TDMs). However, the physical mechanism of high-order harmonic generation (HHG) in solids has not been fully elucidated. According...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-07, Vol.15 (7), p.1427
Main Authors: Hu, Zijian, Xie, Xiance, Yang, Zhihong, Wang, Yunhui, Jiang, Shicheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid-state high-order harmonic generation (HHG) now is a strong tool for detecting target properties, like band structure, Berry curvature and transition dipole moments (TDMs). However, the physical mechanism of high-order harmonic generation (HHG) in solids has not been fully elucidated. According to previously published works, in addition to the inter-band polarization, intra-band currents, and anomalous currents due to Berry curvature, there is another term which will be called the mixture term (MT). Taking monolayer ZnO as a sample, it is found that the intensity of the mixture term, which has been ignored for a long time in previous works, actually is comparable with other terms. Additionally, we compare the orientation-dependent HHG spectra that originated from different mechanisms. It is found that the inter-band and mixture HHG show similar orientation features. Meanwhile, Berry curvature only produces perpendicularly polarized even harmonics, and intra-band perpendicularly polarized even harmonics show special orientation features which can be explained by the orientation-dependent group velocity. This work will help people understand the mechanisms of solid-HHG better.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15071427