Loading…
Fabrication of Cu1.5Mn1.5O4 Nanoparticles Using One Step Self-Assembling Route to Enhance Energy Consumption
The preparation of copper manganite (hopcalite, Cu1.5Mn1.5O4), as a single phase, was achieved by using a sustainable method of green synthesis. This method is based on the replacement of the conventional “brute force” ceramic preparation by the recent “soft force” green synthesis via the egg white...
Saved in:
Published in: | Applied sciences 2021-03, Vol.11 (5), p.2034 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The preparation of copper manganite (hopcalite, Cu1.5Mn1.5O4), as a single phase, was achieved by using a sustainable method of green synthesis. This method is based on the replacement of the conventional “brute force” ceramic preparation by the recent “soft force” green synthesis via the egg white assisted one-step method. In other words, we present a facile and rapid methodology to prepare the nanocrystalline Cu1.5Mn1.5O4 spinel as a single phase, compared to our previous work using ceramic and glycine-assisted combustion methods. The as-synthesized copper manganite was characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and scanning electron microscope (SEM). We used a vibrating sample magnetometer to determine the magnetic properties of the prepared sample (VSM). XRD, FTIR, SEM, EDS and transmittance electron micrograph (TEM) resulted in synthesis of a successful cubic spinel Cu1.5Mn1.5O4 system with a sponge crystal structure. The particles of the prepared materials are polycrystalline in their nature and the sizes ranged between 50 and 100 nm. The magnetic measurement demonstrated that the generated nanostructure has been found to exhibit ferromagnetism at room temperature with an optimum saturation magnetization value (0.2944 emu/g). |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11052034 |