Loading…

Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty

We recently established an impedance standard for the D-band, one of the 6G candidate frequencies. However, primary standards are difficult to use for routine calibration because they require multiple impedance standards and a lot of time to calibrate the vector network analyzer (VNA). Therefore, a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.12902-12908
Main Authors: Cho, Chihyun, Kwon, Jae-Yong, Kang, Tae-Weon, Koo, Hyunji, Chung, Woohyun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12908
container_issue
container_start_page 12902
container_title IEEE access
container_volume 12
creator Cho, Chihyun
Kwon, Jae-Yong
Kang, Tae-Weon
Koo, Hyunji
Chung, Woohyun
description We recently established an impedance standard for the D-band, one of the 6G candidate frequencies. However, primary standards are difficult to use for routine calibration because they require multiple impedance standards and a lot of time to calibrate the vector network analyzer (VNA). Therefore, a transfer standard is needed to efficiently apply the calibration value and to propagate the uncertainty of the primary standard to a device under test (DUT). In this paper, we describe a design method for a transfer standard with small uncertainty even when an arbitrary DUT is measured. This is achieved by propagating the uncertainty of the primary standard to the transfer standard and then propagating it again to the uncertainty of the DUT. We developed a calibration kit that has low uncertainty over a wide frequency band, from 110 GHz to 170 GHz, and consists of waveguide offset shorts for ease of production. We also propose a method to minimize DUT uncertainty and a method to minimize “phase distance” to find the optimal length of the offset short. When using three offset shorts, an uncertainty similar to that of the short-open-load-thru (SOLT) calibration kit was obtained, and when using four offset shorts, an uncertainty comparable to the primary standard was obtained. Lastly, this paper examines the repeatability of measurements and reproducibility during the production process.
doi_str_mv 10.1109/ACCESS.2024.3355496
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1ed986a317114dc98fa5e63b103639d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1ed986a317114dc98fa5e63b103639d1</doaj_id><sourcerecordid>2918610498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d9d2d6e1dcea93736488eeed990a2f1a7ac1b1678592cc90669237f06eac333b3</originalsourceid><addsrcrecordid>eNpNkcFqGzEQhpfSQkOaJ-hFkLNdzc6uVjqGbdqGuuTghh7FWBo5Ms4qleSWvH3WcSidywzDzzcDX9N8BLkEkObT1Ther9fLVrbdErHvO6PeNGctKLPAHtXb_-b3zUUpOzmXnlf9cNbQZy5xO4kUBIlf9Ie3h-hZjLSPm0w1pkl8j1WMaSqx1Dhtj8nbEApXsb5PuRYRUhar9Ff8YCqHzA88VXE3Oc6V4lSfPjTvAu0LX7z28-buy_XP8dtidfv1ZrxaLRyirgtvfOsVg3dMBgdUndbM7I2R1AaggRxsQA26N61zRiplWhyCVEwzADd43tycuD7Rzj7m-ED5ySaK9mWR8tZSrtHt2cKM1YoQBoDOO6MD9axwAxIVGg8z6_LEeszp94FLtbt0yNP8vm0NaAWyM3pO4Snlciolc_h3FaQ9qrEnNfaoxr6qwWftwYEc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918610498</pqid></control><display><type>article</type><title>Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty</title><source>IEEE Open Access Journals</source><creator>Cho, Chihyun ; Kwon, Jae-Yong ; Kang, Tae-Weon ; Koo, Hyunji ; Chung, Woohyun</creator><creatorcontrib>Cho, Chihyun ; Kwon, Jae-Yong ; Kang, Tae-Weon ; Koo, Hyunji ; Chung, Woohyun</creatorcontrib><description>We recently established an impedance standard for the D-band, one of the 6G candidate frequencies. However, primary standards are difficult to use for routine calibration because they require multiple impedance standards and a lot of time to calibrate the vector network analyzer (VNA). Therefore, a transfer standard is needed to efficiently apply the calibration value and to propagate the uncertainty of the primary standard to a device under test (DUT). In this paper, we describe a design method for a transfer standard with small uncertainty even when an arbitrary DUT is measured. This is achieved by propagating the uncertainty of the primary standard to the transfer standard and then propagating it again to the uncertainty of the DUT. We developed a calibration kit that has low uncertainty over a wide frequency band, from 110 GHz to 170 GHz, and consists of waveguide offset shorts for ease of production. We also propose a method to minimize DUT uncertainty and a method to minimize “phase distance” to find the optimal length of the offset short. When using three offset shorts, an uncertainty similar to that of the short-open-load-thru (SOLT) calibration kit was obtained, and when using four offset shorts, an uncertainty comparable to the primary standard was obtained. Lastly, this paper examines the repeatability of measurements and reproducibility during the production process.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3355496</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Calibration ; Frequencies ; Impedance ; measurement uncertainty ; Network analysers ; network analyzers ; optimization ; Reproducibility ; Uncertainty ; Waveguides</subject><ispartof>IEEE access, 2024, Vol.12, p.12902-12908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1541-0745 ; 0000-0002-0572-1005 ; 0000-0003-2506-576X ; 0000-0002-8337-1821 ; 0000-0002-7457-6585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Cho, Chihyun</creatorcontrib><creatorcontrib>Kwon, Jae-Yong</creatorcontrib><creatorcontrib>Kang, Tae-Weon</creatorcontrib><creatorcontrib>Koo, Hyunji</creatorcontrib><creatorcontrib>Chung, Woohyun</creatorcontrib><title>Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty</title><title>IEEE access</title><description>We recently established an impedance standard for the D-band, one of the 6G candidate frequencies. However, primary standards are difficult to use for routine calibration because they require multiple impedance standards and a lot of time to calibrate the vector network analyzer (VNA). Therefore, a transfer standard is needed to efficiently apply the calibration value and to propagate the uncertainty of the primary standard to a device under test (DUT). In this paper, we describe a design method for a transfer standard with small uncertainty even when an arbitrary DUT is measured. This is achieved by propagating the uncertainty of the primary standard to the transfer standard and then propagating it again to the uncertainty of the DUT. We developed a calibration kit that has low uncertainty over a wide frequency band, from 110 GHz to 170 GHz, and consists of waveguide offset shorts for ease of production. We also propose a method to minimize DUT uncertainty and a method to minimize “phase distance” to find the optimal length of the offset short. When using three offset shorts, an uncertainty similar to that of the short-open-load-thru (SOLT) calibration kit was obtained, and when using four offset shorts, an uncertainty comparable to the primary standard was obtained. Lastly, this paper examines the repeatability of measurements and reproducibility during the production process.</description><subject>Calibration</subject><subject>Frequencies</subject><subject>Impedance</subject><subject>measurement uncertainty</subject><subject>Network analysers</subject><subject>network analyzers</subject><subject>optimization</subject><subject>Reproducibility</subject><subject>Uncertainty</subject><subject>Waveguides</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkcFqGzEQhpfSQkOaJ-hFkLNdzc6uVjqGbdqGuuTghh7FWBo5Ms4qleSWvH3WcSidywzDzzcDX9N8BLkEkObT1Ther9fLVrbdErHvO6PeNGctKLPAHtXb_-b3zUUpOzmXnlf9cNbQZy5xO4kUBIlf9Ie3h-hZjLSPm0w1pkl8j1WMaSqx1Dhtj8nbEApXsb5PuRYRUhar9Ff8YCqHzA88VXE3Oc6V4lSfPjTvAu0LX7z28-buy_XP8dtidfv1ZrxaLRyirgtvfOsVg3dMBgdUndbM7I2R1AaggRxsQA26N61zRiplWhyCVEwzADd43tycuD7Rzj7m-ED5ySaK9mWR8tZSrtHt2cKM1YoQBoDOO6MD9axwAxIVGg8z6_LEeszp94FLtbt0yNP8vm0NaAWyM3pO4Snlciolc_h3FaQ9qrEnNfaoxr6qwWftwYEc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cho, Chihyun</creator><creator>Kwon, Jae-Yong</creator><creator>Kang, Tae-Weon</creator><creator>Koo, Hyunji</creator><creator>Chung, Woohyun</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1541-0745</orcidid><orcidid>https://orcid.org/0000-0002-0572-1005</orcidid><orcidid>https://orcid.org/0000-0003-2506-576X</orcidid><orcidid>https://orcid.org/0000-0002-8337-1821</orcidid><orcidid>https://orcid.org/0000-0002-7457-6585</orcidid></search><sort><creationdate>2024</creationdate><title>Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty</title><author>Cho, Chihyun ; Kwon, Jae-Yong ; Kang, Tae-Weon ; Koo, Hyunji ; Chung, Woohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d9d2d6e1dcea93736488eeed990a2f1a7ac1b1678592cc90669237f06eac333b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calibration</topic><topic>Frequencies</topic><topic>Impedance</topic><topic>measurement uncertainty</topic><topic>Network analysers</topic><topic>network analyzers</topic><topic>optimization</topic><topic>Reproducibility</topic><topic>Uncertainty</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Chihyun</creatorcontrib><creatorcontrib>Kwon, Jae-Yong</creatorcontrib><creatorcontrib>Kang, Tae-Weon</creatorcontrib><creatorcontrib>Koo, Hyunji</creatorcontrib><creatorcontrib>Chung, Woohyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Chihyun</au><au>Kwon, Jae-Yong</au><au>Kang, Tae-Weon</au><au>Koo, Hyunji</au><au>Chung, Woohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty</atitle><jtitle>IEEE access</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>12902</spage><epage>12908</epage><pages>12902-12908</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>We recently established an impedance standard for the D-band, one of the 6G candidate frequencies. However, primary standards are difficult to use for routine calibration because they require multiple impedance standards and a lot of time to calibrate the vector network analyzer (VNA). Therefore, a transfer standard is needed to efficiently apply the calibration value and to propagate the uncertainty of the primary standard to a device under test (DUT). In this paper, we describe a design method for a transfer standard with small uncertainty even when an arbitrary DUT is measured. This is achieved by propagating the uncertainty of the primary standard to the transfer standard and then propagating it again to the uncertainty of the DUT. We developed a calibration kit that has low uncertainty over a wide frequency band, from 110 GHz to 170 GHz, and consists of waveguide offset shorts for ease of production. We also propose a method to minimize DUT uncertainty and a method to minimize “phase distance” to find the optimal length of the offset short. When using three offset shorts, an uncertainty similar to that of the short-open-load-thru (SOLT) calibration kit was obtained, and when using four offset shorts, an uncertainty comparable to the primary standard was obtained. Lastly, this paper examines the repeatability of measurements and reproducibility during the production process.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2024.3355496</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1541-0745</orcidid><orcidid>https://orcid.org/0000-0002-0572-1005</orcidid><orcidid>https://orcid.org/0000-0003-2506-576X</orcidid><orcidid>https://orcid.org/0000-0002-8337-1821</orcidid><orcidid>https://orcid.org/0000-0002-7457-6585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.12902-12908
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1ed986a317114dc98fa5e63b103639d1
source IEEE Open Access Journals
subjects Calibration
Frequencies
Impedance
measurement uncertainty
Network analysers
network analyzers
optimization
Reproducibility
Uncertainty
Waveguides
title Design of a Waveguide Calibration Kit Consisting of Offset Shorts for Low Measurement Uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Waveguide%20Calibration%20Kit%20Consisting%20of%20Offset%20Shorts%20for%20Low%20Measurement%20Uncertainty&rft.jtitle=IEEE%20access&rft.au=Cho,%20Chihyun&rft.date=2024&rft.volume=12&rft.spage=12902&rft.epage=12908&rft.pages=12902-12908&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2024.3355496&rft_dat=%3Cproquest_doaj_%3E2918610498%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-d9d2d6e1dcea93736488eeed990a2f1a7ac1b1678592cc90669237f06eac333b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918610498&rft_id=info:pmid/&rfr_iscdi=true