Loading…
Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences
Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic reso...
Saved in:
Published in: | Brain sciences 2023-01, Vol.13 (1), p.122 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3 |
container_end_page | |
container_issue | 1 |
container_start_page | 122 |
container_title | Brain sciences |
container_volume | 13 |
creator | Han, Junrong Zhou, Liwei Wu, Hang Huang, Yujuan Qiu, Mincong Huang, Likai Lee, Chia Lane, Timothy Joseph Qin, Pengmin |
description | Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC. |
doi_str_mv | 10.3390/brainsci13010122 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151</doaj_id><sourcerecordid>2768229779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi0EolXpnRNaiQuXBT_WrwsSSgutVFGJx9ma9c4Gh40d7E1R_nucplRtfRl75pufxvMR8prR90JY-qHPEGLxgQnKKOP8GTnmVKtWdFw-f3A_IqelrGg9hlIh6UtyJJTSnFFxTC7Od1ja6w3GBuLQ3L4WUyo4NN-wzCEum-8zzNh8xflvyr-bRYoR_RxuwrxrzsI4YsbosbwiL0aYCp7exRPy8_P5j8VFe3X95XLx6ar1naVzi9YOXljfmVGqOjfv6KBAWia5QdNr73VvFPeiByUUcCN4LWkOCnttRhAn5PLAHRKs3CaHNeSdSxDcbSLlpYM8Bz-hYzh2gFIzalk3SAlaWj_2oDu0A5Ossj4eWJttv8bBY5wzTI-gjysx_HLLdOOskZpbUQHv7gA5_dnWfbl1KB6nCSKmbXFcK8O51dpW6dsn0lXa5lhXtVdpZpjs9kB6UPmcSsk43g_DqNu77p66XlvePPzEfcN_j8U_KKOopg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767181543</pqid></control><display><type>article</type><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</creator><creatorcontrib>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</creatorcontrib><description>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci13010122</identifier><identifier>PMID: 36672103</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Attention ; Brain ; Brain mapping ; Datasets ; Eye ; eyes closed ; eyes open ; fMRI ; Functional magnetic resonance imaging ; Hypotheses ; Magnetic resonance imaging ; Mental disorders ; Neural networks ; Neuroimaging ; resting state network ; salience network ; Scanners ; Sensorimotor integration ; Visual perception</subject><ispartof>Brain sciences, 2023-01, Vol.13 (1), p.122</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</citedby><cites>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</cites><orcidid>0000-0002-8460-0550 ; 0000-0002-3569-6365 ; 0000-0002-8608-4270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767181543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767181543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36672103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Junrong</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Huang, Yujuan</creatorcontrib><creatorcontrib>Qiu, Mincong</creatorcontrib><creatorcontrib>Huang, Likai</creatorcontrib><creatorcontrib>Lee, Chia</creatorcontrib><creatorcontrib>Lane, Timothy Joseph</creatorcontrib><creatorcontrib>Qin, Pengmin</creatorcontrib><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</description><subject>Attention</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Datasets</subject><subject>Eye</subject><subject>eyes closed</subject><subject>eyes open</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Hypotheses</subject><subject>Magnetic resonance imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>resting state network</subject><subject>salience network</subject><subject>Scanners</subject><subject>Sensorimotor integration</subject><subject>Visual perception</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctvEzEQxi0EolXpnRNaiQuXBT_WrwsSSgutVFGJx9ma9c4Gh40d7E1R_nucplRtfRl75pufxvMR8prR90JY-qHPEGLxgQnKKOP8GTnmVKtWdFw-f3A_IqelrGg9hlIh6UtyJJTSnFFxTC7Od1ja6w3GBuLQ3L4WUyo4NN-wzCEum-8zzNh8xflvyr-bRYoR_RxuwrxrzsI4YsbosbwiL0aYCp7exRPy8_P5j8VFe3X95XLx6ar1naVzi9YOXljfmVGqOjfv6KBAWia5QdNr73VvFPeiByUUcCN4LWkOCnttRhAn5PLAHRKs3CaHNeSdSxDcbSLlpYM8Bz-hYzh2gFIzalk3SAlaWj_2oDu0A5Ossj4eWJttv8bBY5wzTI-gjysx_HLLdOOskZpbUQHv7gA5_dnWfbl1KB6nCSKmbXFcK8O51dpW6dsn0lXa5lhXtVdpZpjs9kB6UPmcSsk43g_DqNu77p66XlvePPzEfcN_j8U_KKOopg</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Han, Junrong</creator><creator>Zhou, Liwei</creator><creator>Wu, Hang</creator><creator>Huang, Yujuan</creator><creator>Qiu, Mincong</creator><creator>Huang, Likai</creator><creator>Lee, Chia</creator><creator>Lane, Timothy Joseph</creator><creator>Qin, Pengmin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8460-0550</orcidid><orcidid>https://orcid.org/0000-0002-3569-6365</orcidid><orcidid>https://orcid.org/0000-0002-8608-4270</orcidid></search><sort><creationdate>20230110</creationdate><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><author>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Datasets</topic><topic>Eye</topic><topic>eyes closed</topic><topic>eyes open</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Hypotheses</topic><topic>Magnetic resonance imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>resting state network</topic><topic>salience network</topic><topic>Scanners</topic><topic>Sensorimotor integration</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junrong</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Huang, Yujuan</creatorcontrib><creatorcontrib>Qiu, Mincong</creatorcontrib><creatorcontrib>Huang, Likai</creatorcontrib><creatorcontrib>Lee, Chia</creatorcontrib><creatorcontrib>Lane, Timothy Joseph</creatorcontrib><creatorcontrib>Qin, Pengmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junrong</au><au>Zhou, Liwei</au><au>Wu, Hang</au><au>Huang, Yujuan</au><au>Qiu, Mincong</au><au>Huang, Likai</au><au>Lee, Chia</au><au>Lane, Timothy Joseph</au><au>Qin, Pengmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>122</spage><pages>122-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36672103</pmid><doi>10.3390/brainsci13010122</doi><orcidid>https://orcid.org/0000-0002-8460-0550</orcidid><orcidid>https://orcid.org/0000-0002-3569-6365</orcidid><orcidid>https://orcid.org/0000-0002-8608-4270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3425 |
ispartof | Brain sciences, 2023-01, Vol.13 (1), p.122 |
issn | 2076-3425 2076-3425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Attention Brain Brain mapping Datasets Eye eyes closed eyes open fMRI Functional magnetic resonance imaging Hypotheses Magnetic resonance imaging Mental disorders Neural networks Neuroimaging resting state network salience network Scanners Sensorimotor integration Visual perception |
title | Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eyes-Open%20and%20Eyes-Closed%20Resting%20State%20Network%20Connectivity%20Differences&rft.jtitle=Brain%20sciences&rft.au=Han,%20Junrong&rft.date=2023-01-10&rft.volume=13&rft.issue=1&rft.spage=122&rft.pages=122-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci13010122&rft_dat=%3Cproquest_doaj_%3E2768229779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767181543&rft_id=info:pmid/36672103&rfr_iscdi=true |