Loading…

Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences

Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic reso...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2023-01, Vol.13 (1), p.122
Main Authors: Han, Junrong, Zhou, Liwei, Wu, Hang, Huang, Yujuan, Qiu, Mincong, Huang, Likai, Lee, Chia, Lane, Timothy Joseph, Qin, Pengmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3
cites cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3
container_end_page
container_issue 1
container_start_page 122
container_title Brain sciences
container_volume 13
creator Han, Junrong
Zhou, Liwei
Wu, Hang
Huang, Yujuan
Qiu, Mincong
Huang, Likai
Lee, Chia
Lane, Timothy Joseph
Qin, Pengmin
description Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.
doi_str_mv 10.3390/brainsci13010122
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151</doaj_id><sourcerecordid>2768229779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</originalsourceid><addsrcrecordid>eNpdkctvEzEQxi0EolXpnRNaiQuXBT_WrwsSSgutVFGJx9ma9c4Gh40d7E1R_nucplRtfRl75pufxvMR8prR90JY-qHPEGLxgQnKKOP8GTnmVKtWdFw-f3A_IqelrGg9hlIh6UtyJJTSnFFxTC7Od1ja6w3GBuLQ3L4WUyo4NN-wzCEum-8zzNh8xflvyr-bRYoR_RxuwrxrzsI4YsbosbwiL0aYCp7exRPy8_P5j8VFe3X95XLx6ar1naVzi9YOXljfmVGqOjfv6KBAWia5QdNr73VvFPeiByUUcCN4LWkOCnttRhAn5PLAHRKs3CaHNeSdSxDcbSLlpYM8Bz-hYzh2gFIzalk3SAlaWj_2oDu0A5Ossj4eWJttv8bBY5wzTI-gjysx_HLLdOOskZpbUQHv7gA5_dnWfbl1KB6nCSKmbXFcK8O51dpW6dsn0lXa5lhXtVdpZpjs9kB6UPmcSsk43g_DqNu77p66XlvePPzEfcN_j8U_KKOopg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767181543</pqid></control><display><type>article</type><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</creator><creatorcontrib>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</creatorcontrib><description>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci13010122</identifier><identifier>PMID: 36672103</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Attention ; Brain ; Brain mapping ; Datasets ; Eye ; eyes closed ; eyes open ; fMRI ; Functional magnetic resonance imaging ; Hypotheses ; Magnetic resonance imaging ; Mental disorders ; Neural networks ; Neuroimaging ; resting state network ; salience network ; Scanners ; Sensorimotor integration ; Visual perception</subject><ispartof>Brain sciences, 2023-01, Vol.13 (1), p.122</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</citedby><cites>FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</cites><orcidid>0000-0002-8460-0550 ; 0000-0002-3569-6365 ; 0000-0002-8608-4270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767181543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767181543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36672103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Junrong</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Huang, Yujuan</creatorcontrib><creatorcontrib>Qiu, Mincong</creatorcontrib><creatorcontrib>Huang, Likai</creatorcontrib><creatorcontrib>Lee, Chia</creatorcontrib><creatorcontrib>Lane, Timothy Joseph</creatorcontrib><creatorcontrib>Qin, Pengmin</creatorcontrib><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</description><subject>Attention</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Datasets</subject><subject>Eye</subject><subject>eyes closed</subject><subject>eyes open</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Hypotheses</subject><subject>Magnetic resonance imaging</subject><subject>Mental disorders</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>resting state network</subject><subject>salience network</subject><subject>Scanners</subject><subject>Sensorimotor integration</subject><subject>Visual perception</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctvEzEQxi0EolXpnRNaiQuXBT_WrwsSSgutVFGJx9ma9c4Gh40d7E1R_nucplRtfRl75pufxvMR8prR90JY-qHPEGLxgQnKKOP8GTnmVKtWdFw-f3A_IqelrGg9hlIh6UtyJJTSnFFxTC7Od1ja6w3GBuLQ3L4WUyo4NN-wzCEum-8zzNh8xflvyr-bRYoR_RxuwrxrzsI4YsbosbwiL0aYCp7exRPy8_P5j8VFe3X95XLx6ar1naVzi9YOXljfmVGqOjfv6KBAWia5QdNr73VvFPeiByUUcCN4LWkOCnttRhAn5PLAHRKs3CaHNeSdSxDcbSLlpYM8Bz-hYzh2gFIzalk3SAlaWj_2oDu0A5Ossj4eWJttv8bBY5wzTI-gjysx_HLLdOOskZpbUQHv7gA5_dnWfbl1KB6nCSKmbXFcK8O51dpW6dsn0lXa5lhXtVdpZpjs9kB6UPmcSsk43g_DqNu77p66XlvePPzEfcN_j8U_KKOopg</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Han, Junrong</creator><creator>Zhou, Liwei</creator><creator>Wu, Hang</creator><creator>Huang, Yujuan</creator><creator>Qiu, Mincong</creator><creator>Huang, Likai</creator><creator>Lee, Chia</creator><creator>Lane, Timothy Joseph</creator><creator>Qin, Pengmin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8460-0550</orcidid><orcidid>https://orcid.org/0000-0002-3569-6365</orcidid><orcidid>https://orcid.org/0000-0002-8608-4270</orcidid></search><sort><creationdate>20230110</creationdate><title>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</title><author>Han, Junrong ; Zhou, Liwei ; Wu, Hang ; Huang, Yujuan ; Qiu, Mincong ; Huang, Likai ; Lee, Chia ; Lane, Timothy Joseph ; Qin, Pengmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Datasets</topic><topic>Eye</topic><topic>eyes closed</topic><topic>eyes open</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Hypotheses</topic><topic>Magnetic resonance imaging</topic><topic>Mental disorders</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>resting state network</topic><topic>salience network</topic><topic>Scanners</topic><topic>Sensorimotor integration</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junrong</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Huang, Yujuan</creatorcontrib><creatorcontrib>Qiu, Mincong</creatorcontrib><creatorcontrib>Huang, Likai</creatorcontrib><creatorcontrib>Lee, Chia</creatorcontrib><creatorcontrib>Lane, Timothy Joseph</creatorcontrib><creatorcontrib>Qin, Pengmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junrong</au><au>Zhou, Liwei</au><au>Wu, Hang</au><au>Huang, Yujuan</au><au>Qiu, Mincong</au><au>Huang, Likai</au><au>Lee, Chia</au><au>Lane, Timothy Joseph</au><au>Qin, Pengmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>122</spage><pages>122-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36672103</pmid><doi>10.3390/brainsci13010122</doi><orcidid>https://orcid.org/0000-0002-8460-0550</orcidid><orcidid>https://orcid.org/0000-0002-3569-6365</orcidid><orcidid>https://orcid.org/0000-0002-8608-4270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2023-01, Vol.13 (1), p.122
issn 2076-3425
2076-3425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1ef4ae5710914d55a759cfba74e9d151
source Open Access: PubMed Central; Publicly Available Content Database
subjects Attention
Brain
Brain mapping
Datasets
Eye
eyes closed
eyes open
fMRI
Functional magnetic resonance imaging
Hypotheses
Magnetic resonance imaging
Mental disorders
Neural networks
Neuroimaging
resting state network
salience network
Scanners
Sensorimotor integration
Visual perception
title Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eyes-Open%20and%20Eyes-Closed%20Resting%20State%20Network%20Connectivity%20Differences&rft.jtitle=Brain%20sciences&rft.au=Han,%20Junrong&rft.date=2023-01-10&rft.volume=13&rft.issue=1&rft.spage=122&rft.pages=122-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci13010122&rft_dat=%3Cproquest_doaj_%3E2768229779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-e99dc39c48f56010240d6a591528e8b7cc7b862c3ba636a283215272a6eb78fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767181543&rft_id=info:pmid/36672103&rfr_iscdi=true