Loading…
Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features
This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving...
Saved in:
Published in: | Shock and vibration 2018-01, Vol.2018 (2018), p.1-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving system of an electric vehicle is used to establish the longitudinal speed control model of the driver by using a feedforward-PID feedback control strategy. Our approach is to release the coupling between direction and speed control and build an integrated model that includes the direction and speed for an arbitrary path. Finally, the characteristics of an actual racing track are considered to establish the fastest driver control model. We simulated the typical operating conditions of our driver operation model. The simulation confirmed the effectiveness of the improved predictive point search algorithm and the integrated driver model to control the direction and speed for an arbitrary path. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2018/7487295 |