Loading…

Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features

This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2018-01, Vol.2018 (2018), p.1-12
Main Authors: Song, Baoyu, Liu, Yiqun, Li, Jun, Li, Weihua, Wang, Jianfeng, Gao, Haibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3
cites cdi_FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3
container_end_page 12
container_issue 2018
container_start_page 1
container_title Shock and vibration
container_volume 2018
creator Song, Baoyu
Liu, Yiqun
Li, Jun
Li, Weihua
Wang, Jianfeng
Gao, Haibo
description This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving system of an electric vehicle is used to establish the longitudinal speed control model of the driver by using a feedforward-PID feedback control strategy. Our approach is to release the coupling between direction and speed control and build an integrated model that includes the direction and speed for an arbitrary path. Finally, the characteristics of an actual racing track are considered to establish the fastest driver control model. We simulated the typical operating conditions of our driver operation model. The simulation confirmed the effectiveness of the improved predictive point search algorithm and the integrated driver model to control the direction and speed for an arbitrary path.
doi_str_mv 10.1155/2018/7487295
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1efbdeb7297847f1ba6f541d1c1cde52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601324525</galeid><doaj_id>oai_doaj_org_article_1efbdeb7297847f1ba6f541d1c1cde52</doaj_id><sourcerecordid>A601324525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEEqVw44wicaRpbceO7WPZUlppERKUszWxx4uX1F7sLBU3XoPX40nwkgqOyAd7fn3za8Z_0zyn5JRSIc4YoepMciWZFg-aI6qk6DQj_cP6JpJ0emDscfOklC0hRPQDP2rMu-RwCnHTQnuRwzfMv378LO1FyGjnkCJMLUTXrlPchHnvwkH4uEN07SrFOaepfQ2lVim2H8AefG4y2C_tJcK8z1ieNo88TAWf3d_HzafLNzerq279_u316nzdWT6IubMwulERiXV47a0Ypbc991qh1D0fATzTzCvlBZF1PeEYYYQwCoxYLSn0x8314usSbM0uh1vI302CYP4IKW8M5DnYCQ1FPzoc6ydJxaWnIwxecOqopdahYNXr5eK1y-nrHststmmf6-bFMMKpkIMSulKnC7WBahqiT3PdvB6Ht8GmiD5U_XwgtGdcMFEbTpYGm1MpGf3fMSkxh_zMIT9zn1_FXy345xAd3IX_0S8WGiuDHv7RjAre6_43sEajrQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041576859</pqid></control><display><type>article</type><title>Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Song, Baoyu ; Liu, Yiqun ; Li, Jun ; Li, Weihua ; Wang, Jianfeng ; Gao, Haibo</creator><contributor>Scott-Emuakpor, Onome E.</contributor><creatorcontrib>Song, Baoyu ; Liu, Yiqun ; Li, Jun ; Li, Weihua ; Wang, Jianfeng ; Gao, Haibo ; Scott-Emuakpor, Onome E.</creatorcontrib><description>This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving system of an electric vehicle is used to establish the longitudinal speed control model of the driver by using a feedforward-PID feedback control strategy. Our approach is to release the coupling between direction and speed control and build an integrated model that includes the direction and speed for an arbitrary path. Finally, the characteristics of an actual racing track are considered to establish the fastest driver control model. We simulated the typical operating conditions of our driver operation model. The simulation confirmed the effectiveness of the improved predictive point search algorithm and the integrated driver model to control the direction and speed for an arbitrary path.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2018/7487295</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Computer simulation ; Control theory ; Controllers ; Decision making ; Feedback control ; Feedforward control ; Kalman filters ; Mathematical models ; Mechanical engineering ; Neural networks ; Predictive control ; Proportional integral derivative ; Racing ; Search algorithms ; Sensors ; Speed control ; Vehicles ; Velocity</subject><ispartof>Shock and vibration, 2018-01, Vol.2018 (2018), p.1-12</ispartof><rights>Copyright © 2018 Jianfeng Wang et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 Jianfeng Wang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3</citedby><cites>FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3</cites><orcidid>0000-0002-9745-4150 ; 0000-0002-9337-3644 ; 0000-0002-7195-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2041576859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2041576859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><contributor>Scott-Emuakpor, Onome E.</contributor><creatorcontrib>Song, Baoyu</creatorcontrib><creatorcontrib>Liu, Yiqun</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><title>Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features</title><title>Shock and vibration</title><description>This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving system of an electric vehicle is used to establish the longitudinal speed control model of the driver by using a feedforward-PID feedback control strategy. Our approach is to release the coupling between direction and speed control and build an integrated model that includes the direction and speed for an arbitrary path. Finally, the characteristics of an actual racing track are considered to establish the fastest driver control model. We simulated the typical operating conditions of our driver operation model. The simulation confirmed the effectiveness of the improved predictive point search algorithm and the integrated driver model to control the direction and speed for an arbitrary path.</description><subject>Computer simulation</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Decision making</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Neural networks</subject><subject>Predictive control</subject><subject>Proportional integral derivative</subject><subject>Racing</subject><subject>Search algorithms</subject><subject>Sensors</subject><subject>Speed control</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkcFu1DAQhiMEEqVw44wicaRpbceO7WPZUlppERKUszWxx4uX1F7sLBU3XoPX40nwkgqOyAd7fn3za8Z_0zyn5JRSIc4YoepMciWZFg-aI6qk6DQj_cP6JpJ0emDscfOklC0hRPQDP2rMu-RwCnHTQnuRwzfMv378LO1FyGjnkCJMLUTXrlPchHnvwkH4uEN07SrFOaepfQ2lVim2H8AefG4y2C_tJcK8z1ieNo88TAWf3d_HzafLNzerq279_u316nzdWT6IubMwulERiXV47a0Ypbc991qh1D0fATzTzCvlBZF1PeEYYYQwCoxYLSn0x8314usSbM0uh1vI302CYP4IKW8M5DnYCQ1FPzoc6ydJxaWnIwxecOqopdahYNXr5eK1y-nrHststmmf6-bFMMKpkIMSulKnC7WBahqiT3PdvB6Ht8GmiD5U_XwgtGdcMFEbTpYGm1MpGf3fMSkxh_zMIT9zn1_FXy345xAd3IX_0S8WGiuDHv7RjAre6_43sEajrQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Song, Baoyu</creator><creator>Liu, Yiqun</creator><creator>Li, Jun</creator><creator>Li, Weihua</creator><creator>Wang, Jianfeng</creator><creator>Gao, Haibo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9745-4150</orcidid><orcidid>https://orcid.org/0000-0002-9337-3644</orcidid><orcidid>https://orcid.org/0000-0002-7195-3146</orcidid></search><sort><creationdate>20180101</creationdate><title>Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features</title><author>Song, Baoyu ; Liu, Yiqun ; Li, Jun ; Li, Weihua ; Wang, Jianfeng ; Gao, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Decision making</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Neural networks</topic><topic>Predictive control</topic><topic>Proportional integral derivative</topic><topic>Racing</topic><topic>Search algorithms</topic><topic>Sensors</topic><topic>Speed control</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Baoyu</creatorcontrib><creatorcontrib>Liu, Yiqun</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Li, Weihua</creatorcontrib><creatorcontrib>Wang, Jianfeng</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Baoyu</au><au>Liu, Yiqun</au><au>Li, Jun</au><au>Li, Weihua</au><au>Wang, Jianfeng</au><au>Gao, Haibo</au><au>Scott-Emuakpor, Onome E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features</atitle><jtitle>Shock and vibration</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>This study firstly analyses the driver’s manipulation behaviour and relates the different components of the driver model. Then, a model controlling the driver directions is built according to the prediction-follower theory with the aim of improving the point search algorithm. A model of the driving system of an electric vehicle is used to establish the longitudinal speed control model of the driver by using a feedforward-PID feedback control strategy. Our approach is to release the coupling between direction and speed control and build an integrated model that includes the direction and speed for an arbitrary path. Finally, the characteristics of an actual racing track are considered to establish the fastest driver control model. We simulated the typical operating conditions of our driver operation model. The simulation confirmed the effectiveness of the improved predictive point search algorithm and the integrated driver model to control the direction and speed for an arbitrary path.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7487295</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9745-4150</orcidid><orcidid>https://orcid.org/0000-0002-9337-3644</orcidid><orcidid>https://orcid.org/0000-0002-7195-3146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2018-01, Vol.2018 (2018), p.1-12
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1efbdeb7297847f1ba6f541d1c1cde52
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Computer simulation
Control theory
Controllers
Decision making
Feedback control
Feedforward control
Kalman filters
Mathematical models
Mechanical engineering
Neural networks
Predictive control
Proportional integral derivative
Racing
Search algorithms
Sensors
Speed control
Vehicles
Velocity
title Modeling a Driver’s Directional and Longitudinal Speed Control Based on Racing Track Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20Driver%E2%80%99s%20Directional%20and%20Longitudinal%20Speed%20Control%20Based%20on%20Racing%20Track%20Features&rft.jtitle=Shock%20and%20vibration&rft.au=Song,%20Baoyu&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2018/7487295&rft_dat=%3Cgale_doaj_%3EA601324525%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-cabdb807e4879fc5b7fc34f98e7934baaf292f88f5078725d2020021a20c971a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041576859&rft_id=info:pmid/&rft_galeid=A601324525&rfr_iscdi=true