Loading…
Rapid and continuous regulating adhesion strength by mechanical micro-vibration
Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mech...
Saved in:
Published in: | Nature communications 2020-03, Vol.11 (1), p.1583-1583, Article 1583 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463 |
container_end_page | 1583 |
container_issue | 1 |
container_start_page | 1583 |
container_title | Nature communications |
container_volume | 11 |
creator | Shui, Langquan Jia, Laibing Li, Hangbo Guo, Jiaojiao Guo, Ziyu Liu, Yilun Liu, Ze Chen, Xi |
description | Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10
7
vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale. |
doi_str_mv | 10.1038/s41467-020-15447-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533</doaj_id><sourcerecordid>2383785202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</originalsourceid><addsrcrecordid>eNp9Uctu1TAQjRCIVqU_wAJFYsMm4Mc4TjZIqOJRqVIlBGtr_Eiur3Lti51U7d_j2_TJAm_GnjlzPHNOVb2l5CMlvPuUgUIrG8JIQwWAbK5fVMeMAG2oZPzlk_tRdZrzlpTDe9oBvK6OOGOMcgLH1eVP3HtbY7C1iWH2YYlLrpMblwnLa6zRblz2MdR5Ti6M86bWN_XOmQ0Gb3Cqd96k2Fx5nQo-hjfVqwGn7E7v4kn1-9vXX2c_movL7-dnXy4aI4DMjWECLGotARgQAcOgOegWOEhtNe3Q9kh0S7m0AlyJTPa9la0TnLAeWn5Sna-8NuJW7ZPfYbpREb26TcQ0KkyzN5NTdOAODNhOYNmeUBxMb2hbEmhAcF64Pq9c-0XvnDUuzAmnZ6TPK8Fv1BivlKSEcn4Y5sMdQYp_FpdntfPZuGnC4IqcivEOGBFF8QJ9_w90G5cUilQHFJedYIQVFFtRRduckxsehqFEHexXq_2q2K9u7VfXpend0zUeWu7NLgC-AnIphdGlx7__Q_sXYfO6-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383785202</pqid></control><display><type>article</type><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><source>Nature_系列刊</source><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</creator><creatorcontrib>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</creatorcontrib><description>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10
7
vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15447-x</identifier><identifier>PMID: 32221304</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/119/544 ; 639/766/119/544 ; Adhesion ; Adhesive strength ; Automation ; Civil engineering ; Control surfaces ; Dynamic stability ; Experiments ; Fabrication ; Flexible components ; Humanities and Social Sciences ; Industrial robots ; Manufacturing engineering ; Mechanics ; multidisciplinary ; Phase transitions ; Polydimethylsiloxane ; Robotics ; Science ; Science (multidisciplinary) ; Silicone resins ; Switching ; Time ; Tuning ; Vibration</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1583-1583, Article 1583</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</citedby><cites>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</cites><orcidid>0000-0002-5079-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383785202/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383785202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32221304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Jia, Laibing</creatorcontrib><creatorcontrib>Li, Hangbo</creatorcontrib><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Guo, Ziyu</creatorcontrib><creatorcontrib>Liu, Yilun</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10
7
vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</description><subject>639/166/988</subject><subject>639/301/119/544</subject><subject>639/766/119/544</subject><subject>Adhesion</subject><subject>Adhesive strength</subject><subject>Automation</subject><subject>Civil engineering</subject><subject>Control surfaces</subject><subject>Dynamic stability</subject><subject>Experiments</subject><subject>Fabrication</subject><subject>Flexible components</subject><subject>Humanities and Social Sciences</subject><subject>Industrial robots</subject><subject>Manufacturing engineering</subject><subject>Mechanics</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Polydimethylsiloxane</subject><subject>Robotics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicone resins</subject><subject>Switching</subject><subject>Time</subject><subject>Tuning</subject><subject>Vibration</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uctu1TAQjRCIVqU_wAJFYsMm4Mc4TjZIqOJRqVIlBGtr_Eiur3Lti51U7d_j2_TJAm_GnjlzPHNOVb2l5CMlvPuUgUIrG8JIQwWAbK5fVMeMAG2oZPzlk_tRdZrzlpTDe9oBvK6OOGOMcgLH1eVP3HtbY7C1iWH2YYlLrpMblwnLa6zRblz2MdR5Ti6M86bWN_XOmQ0Gb3Cqd96k2Fx5nQo-hjfVqwGn7E7v4kn1-9vXX2c_movL7-dnXy4aI4DMjWECLGotARgQAcOgOegWOEhtNe3Q9kh0S7m0AlyJTPa9la0TnLAeWn5Sna-8NuJW7ZPfYbpREb26TcQ0KkyzN5NTdOAODNhOYNmeUBxMb2hbEmhAcF64Pq9c-0XvnDUuzAmnZ6TPK8Fv1BivlKSEcn4Y5sMdQYp_FpdntfPZuGnC4IqcivEOGBFF8QJ9_w90G5cUilQHFJedYIQVFFtRRduckxsehqFEHexXq_2q2K9u7VfXpend0zUeWu7NLgC-AnIphdGlx7__Q_sXYfO6-g</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Shui, Langquan</creator><creator>Jia, Laibing</creator><creator>Li, Hangbo</creator><creator>Guo, Jiaojiao</creator><creator>Guo, Ziyu</creator><creator>Liu, Yilun</creator><creator>Liu, Ze</creator><creator>Chen, Xi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid></search><sort><creationdate>20200327</creationdate><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><author>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/988</topic><topic>639/301/119/544</topic><topic>639/766/119/544</topic><topic>Adhesion</topic><topic>Adhesive strength</topic><topic>Automation</topic><topic>Civil engineering</topic><topic>Control surfaces</topic><topic>Dynamic stability</topic><topic>Experiments</topic><topic>Fabrication</topic><topic>Flexible components</topic><topic>Humanities and Social Sciences</topic><topic>Industrial robots</topic><topic>Manufacturing engineering</topic><topic>Mechanics</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Polydimethylsiloxane</topic><topic>Robotics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicone resins</topic><topic>Switching</topic><topic>Time</topic><topic>Tuning</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Jia, Laibing</creatorcontrib><creatorcontrib>Li, Hangbo</creatorcontrib><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Guo, Ziyu</creatorcontrib><creatorcontrib>Liu, Yilun</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shui, Langquan</au><au>Jia, Laibing</au><au>Li, Hangbo</au><au>Guo, Jiaojiao</au><au>Guo, Ziyu</au><au>Liu, Yilun</au><au>Liu, Ze</au><au>Chen, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1583</spage><epage>1583</epage><pages>1583-1583</pages><artnum>1583</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10
7
vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32221304</pmid><doi>10.1038/s41467-020-15447-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-03, Vol.11 (1), p.1583-1583, Article 1583 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533 |
source | Nature_系列刊; Open Access: PubMed Central; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/988 639/301/119/544 639/766/119/544 Adhesion Adhesive strength Automation Civil engineering Control surfaces Dynamic stability Experiments Fabrication Flexible components Humanities and Social Sciences Industrial robots Manufacturing engineering Mechanics multidisciplinary Phase transitions Polydimethylsiloxane Robotics Science Science (multidisciplinary) Silicone resins Switching Time Tuning Vibration |
title | Rapid and continuous regulating adhesion strength by mechanical micro-vibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20continuous%20regulating%20adhesion%20strength%20by%20mechanical%20micro-vibration&rft.jtitle=Nature%20communications&rft.au=Shui,%20Langquan&rft.date=2020-03-27&rft.volume=11&rft.issue=1&rft.spage=1583&rft.epage=1583&rft.pages=1583-1583&rft.artnum=1583&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15447-x&rft_dat=%3Cproquest_doaj_%3E2383785202%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383785202&rft_id=info:pmid/32221304&rfr_iscdi=true |