Loading…

Rapid and continuous regulating adhesion strength by mechanical micro-vibration

Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mech...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-03, Vol.11 (1), p.1583-1583, Article 1583
Main Authors: Shui, Langquan, Jia, Laibing, Li, Hangbo, Guo, Jiaojiao, Guo, Ziyu, Liu, Yilun, Liu, Ze, Chen, Xi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463
cites cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463
container_end_page 1583
container_issue 1
container_start_page 1583
container_title Nature communications
container_volume 11
creator Shui, Langquan
Jia, Laibing
Li, Hangbo
Guo, Jiaojiao
Guo, Ziyu
Liu, Yilun
Liu, Ze
Chen, Xi
description Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10 7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications. Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.
doi_str_mv 10.1038/s41467-020-15447-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533</doaj_id><sourcerecordid>2383785202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</originalsourceid><addsrcrecordid>eNp9Uctu1TAQjRCIVqU_wAJFYsMm4Mc4TjZIqOJRqVIlBGtr_Eiur3Lti51U7d_j2_TJAm_GnjlzPHNOVb2l5CMlvPuUgUIrG8JIQwWAbK5fVMeMAG2oZPzlk_tRdZrzlpTDe9oBvK6OOGOMcgLH1eVP3HtbY7C1iWH2YYlLrpMblwnLa6zRblz2MdR5Ti6M86bWN_XOmQ0Gb3Cqd96k2Fx5nQo-hjfVqwGn7E7v4kn1-9vXX2c_movL7-dnXy4aI4DMjWECLGotARgQAcOgOegWOEhtNe3Q9kh0S7m0AlyJTPa9la0TnLAeWn5Sna-8NuJW7ZPfYbpREb26TcQ0KkyzN5NTdOAODNhOYNmeUBxMb2hbEmhAcF64Pq9c-0XvnDUuzAmnZ6TPK8Fv1BivlKSEcn4Y5sMdQYp_FpdntfPZuGnC4IqcivEOGBFF8QJ9_w90G5cUilQHFJedYIQVFFtRRduckxsehqFEHexXq_2q2K9u7VfXpend0zUeWu7NLgC-AnIphdGlx7__Q_sXYfO6-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383785202</pqid></control><display><type>article</type><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><source>Nature_系列刊</source><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</creator><creatorcontrib>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</creatorcontrib><description>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10 7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications. Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15447-x</identifier><identifier>PMID: 32221304</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/119/544 ; 639/766/119/544 ; Adhesion ; Adhesive strength ; Automation ; Civil engineering ; Control surfaces ; Dynamic stability ; Experiments ; Fabrication ; Flexible components ; Humanities and Social Sciences ; Industrial robots ; Manufacturing engineering ; Mechanics ; multidisciplinary ; Phase transitions ; Polydimethylsiloxane ; Robotics ; Science ; Science (multidisciplinary) ; Silicone resins ; Switching ; Time ; Tuning ; Vibration</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1583-1583, Article 1583</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</citedby><cites>FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</cites><orcidid>0000-0002-5079-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383785202/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383785202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32221304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Jia, Laibing</creatorcontrib><creatorcontrib>Li, Hangbo</creatorcontrib><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Guo, Ziyu</creatorcontrib><creatorcontrib>Liu, Yilun</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10 7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications. Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</description><subject>639/166/988</subject><subject>639/301/119/544</subject><subject>639/766/119/544</subject><subject>Adhesion</subject><subject>Adhesive strength</subject><subject>Automation</subject><subject>Civil engineering</subject><subject>Control surfaces</subject><subject>Dynamic stability</subject><subject>Experiments</subject><subject>Fabrication</subject><subject>Flexible components</subject><subject>Humanities and Social Sciences</subject><subject>Industrial robots</subject><subject>Manufacturing engineering</subject><subject>Mechanics</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Polydimethylsiloxane</subject><subject>Robotics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicone resins</subject><subject>Switching</subject><subject>Time</subject><subject>Tuning</subject><subject>Vibration</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uctu1TAQjRCIVqU_wAJFYsMm4Mc4TjZIqOJRqVIlBGtr_Eiur3Lti51U7d_j2_TJAm_GnjlzPHNOVb2l5CMlvPuUgUIrG8JIQwWAbK5fVMeMAG2oZPzlk_tRdZrzlpTDe9oBvK6OOGOMcgLH1eVP3HtbY7C1iWH2YYlLrpMblwnLa6zRblz2MdR5Ti6M86bWN_XOmQ0Gb3Cqd96k2Fx5nQo-hjfVqwGn7E7v4kn1-9vXX2c_movL7-dnXy4aI4DMjWECLGotARgQAcOgOegWOEhtNe3Q9kh0S7m0AlyJTPa9la0TnLAeWn5Sna-8NuJW7ZPfYbpREb26TcQ0KkyzN5NTdOAODNhOYNmeUBxMb2hbEmhAcF64Pq9c-0XvnDUuzAmnZ6TPK8Fv1BivlKSEcn4Y5sMdQYp_FpdntfPZuGnC4IqcivEOGBFF8QJ9_w90G5cUilQHFJedYIQVFFtRRduckxsehqFEHexXq_2q2K9u7VfXpend0zUeWu7NLgC-AnIphdGlx7__Q_sXYfO6-g</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Shui, Langquan</creator><creator>Jia, Laibing</creator><creator>Li, Hangbo</creator><creator>Guo, Jiaojiao</creator><creator>Guo, Ziyu</creator><creator>Liu, Yilun</creator><creator>Liu, Ze</creator><creator>Chen, Xi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid></search><sort><creationdate>20200327</creationdate><title>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</title><author>Shui, Langquan ; Jia, Laibing ; Li, Hangbo ; Guo, Jiaojiao ; Guo, Ziyu ; Liu, Yilun ; Liu, Ze ; Chen, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/988</topic><topic>639/301/119/544</topic><topic>639/766/119/544</topic><topic>Adhesion</topic><topic>Adhesive strength</topic><topic>Automation</topic><topic>Civil engineering</topic><topic>Control surfaces</topic><topic>Dynamic stability</topic><topic>Experiments</topic><topic>Fabrication</topic><topic>Flexible components</topic><topic>Humanities and Social Sciences</topic><topic>Industrial robots</topic><topic>Manufacturing engineering</topic><topic>Mechanics</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Polydimethylsiloxane</topic><topic>Robotics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicone resins</topic><topic>Switching</topic><topic>Time</topic><topic>Tuning</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Jia, Laibing</creatorcontrib><creatorcontrib>Li, Hangbo</creatorcontrib><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Guo, Ziyu</creatorcontrib><creatorcontrib>Liu, Yilun</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shui, Langquan</au><au>Jia, Laibing</au><au>Li, Hangbo</au><au>Guo, Jiaojiao</au><au>Guo, Ziyu</au><au>Liu, Yilun</au><au>Liu, Ze</au><au>Chen, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and continuous regulating adhesion strength by mechanical micro-vibration</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1583</spage><epage>1583</epage><pages>1583-1583</pages><artnum>1583</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2 × 10 7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications. Controlled tuning of surface adhesion is crucial to a broad range of applications. By simply introducing a mechanical micro-vibration, Shui et al. discover that the surface adhesion can be either enhanced by orders of magnitude or weakened to zero with a switching rate at millisecond timescale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32221304</pmid><doi>10.1038/s41467-020-15447-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-03, Vol.11 (1), p.1583-1583, Article 1583
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1f3e4c4d85a84401afc9c164d8ac4533
source Nature_系列刊; Open Access: PubMed Central; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/988
639/301/119/544
639/766/119/544
Adhesion
Adhesive strength
Automation
Civil engineering
Control surfaces
Dynamic stability
Experiments
Fabrication
Flexible components
Humanities and Social Sciences
Industrial robots
Manufacturing engineering
Mechanics
multidisciplinary
Phase transitions
Polydimethylsiloxane
Robotics
Science
Science (multidisciplinary)
Silicone resins
Switching
Time
Tuning
Vibration
title Rapid and continuous regulating adhesion strength by mechanical micro-vibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20continuous%20regulating%20adhesion%20strength%20by%20mechanical%20micro-vibration&rft.jtitle=Nature%20communications&rft.au=Shui,%20Langquan&rft.date=2020-03-27&rft.volume=11&rft.issue=1&rft.spage=1583&rft.epage=1583&rft.pages=1583-1583&rft.artnum=1583&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15447-x&rft_dat=%3Cproquest_doaj_%3E2383785202%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c254dabb74424054ffb34b64347bdb18ad9a0b6137d54e6132799d76e53029463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383785202&rft_id=info:pmid/32221304&rfr_iscdi=true