Loading…

Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules

The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. 183 cancer patients who underwent...

Full description

Saved in:
Bibliographic Details
Published in:Cancer imaging 2021-01, Vol.21 (1), p.17-17, Article 17
Main Authors: Lennartz, Simon, Mager, Alina, Große Hokamp, Nils, Schäfer, Sebastian, Zopfs, David, Maintz, David, Reinhardt, Hans Christian, Thomas, Roman K, Caldeira, Liliana, Persigehl, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203
cites cdi_FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203
container_end_page 17
container_issue 1
container_start_page 17
container_title Cancer imaging
container_volume 21
creator Lennartz, Simon
Mager, Alina
Große Hokamp, Nils
Schäfer, Sebastian
Zopfs, David
Maintz, David
Reinhardt, Hans Christian
Thomas, Roman K
Caldeira, Liliana
Persigehl, Thorsten
description The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, F-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy  compared to classification based on conventional image features only.
doi_str_mv 10.1186/s40644-020-00374-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f46b64f9dd7422297b9bc2657acaeff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650451856</galeid><doaj_id>oai_doaj_org_article_1f46b64f9dd7422297b9bc2657acaeff</doaj_id><sourcerecordid>A650451856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEoqXwBzigSEiIS4pfceILUlXxqFSJSzlbjj3OevHai51U7Zk_jrNbyi5COTgaf_PZnpmqeo3ROcY9_5AZ4ow1iKAGIdqxhj6pTjHrUNNRip4e_J9UL3JeI0REL7rn1QmlTAhBxWn16wbupjlBrYLy99nlOtraReMC1Bu1zSVuah3DLYTJxcLUbqNGyLWNqf7RBFAJ8lQHcONqKCHtVc7OOq0WfJENENwYdp4NTCpPZUfXfg5jHaKZPeSX1TOrfIZXD-tZ9f3zp5vLr831ty9XlxfXjW4Fm5qB9MYq3mJOOqNMT0jLe8t4D0YxPlCNERlabBGBrnBsaDUZNNXCKt1hguhZdbX3mqjWcpvKS9K9jMrJXSCmUapULudB4uIdOLPCmI4RQkQ3iEET3nZKK7C2uD7uXdt52IDRpTxJ-SPp8U5wKznGW9n1lGPWFsH7B0GKP-dSQ7lxWYP3KkCcsySsx5z2DC3o23_QdZxT6cVCCUxF0ZG_1KjKA1ywsZyrF6m84C1iLe5bXqjz_1DlM7Bxpc9gXYkfJbw7SFiB8tMqRz8v7c3HINmDOsWcE9jHYmAkl3mV-3mVZV7lbl4lLUlvDsv4mPJnQOlvGJvm8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491394532</pqid></control><display><type>article</type><title>Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lennartz, Simon ; Mager, Alina ; Große Hokamp, Nils ; Schäfer, Sebastian ; Zopfs, David ; Maintz, David ; Reinhardt, Hans Christian ; Thomas, Roman K ; Caldeira, Liliana ; Persigehl, Thorsten</creator><creatorcontrib>Lennartz, Simon ; Mager, Alina ; Große Hokamp, Nils ; Schäfer, Sebastian ; Zopfs, David ; Maintz, David ; Reinhardt, Hans Christian ; Thomas, Roman K ; Caldeira, Liliana ; Persigehl, Thorsten</creatorcontrib><description>The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, F-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy  compared to classification based on conventional image features only.</description><identifier>ISSN: 1470-7330</identifier><identifier>ISSN: 1740-5025</identifier><identifier>EISSN: 1470-7330</identifier><identifier>DOI: 10.1186/s40644-020-00374-3</identifier><identifier>PMID: 33499939</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Attenuation ; Cancer therapies ; Chest ; Classification ; Classifiers ; CT imaging ; Datasets ; Detectors ; Diagnosis ; Differentiation ; Dual-energy CT ; Entropy ; Female ; Fluorodeoxyglucose F18 - therapeutic use ; Histochemistry ; Humans ; Image acquisition ; Image classification ; Image segmentation ; Iodine ; Iodine - metabolism ; K-nearest neighbors algorithm ; Kurtosis ; Lung cancer ; Lung Neoplasms - classification ; Lung Neoplasms - diagnostic imaging ; Lung nodules ; Lungs ; Male ; Medical imaging ; Metastasis ; Middle Aged ; Nodules ; PET imaging ; Pixels ; Positron Emission Tomography Computed Tomography - methods ; Spectral detector CT ; Staging ; Texture ; Tomography, X-Ray Computed - methods</subject><ispartof>Cancer imaging, 2021-01, Vol.21 (1), p.17-17, Article 17</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203</citedby><cites>FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2491394532?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33499939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lennartz, Simon</creatorcontrib><creatorcontrib>Mager, Alina</creatorcontrib><creatorcontrib>Große Hokamp, Nils</creatorcontrib><creatorcontrib>Schäfer, Sebastian</creatorcontrib><creatorcontrib>Zopfs, David</creatorcontrib><creatorcontrib>Maintz, David</creatorcontrib><creatorcontrib>Reinhardt, Hans Christian</creatorcontrib><creatorcontrib>Thomas, Roman K</creatorcontrib><creatorcontrib>Caldeira, Liliana</creatorcontrib><creatorcontrib>Persigehl, Thorsten</creatorcontrib><title>Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules</title><title>Cancer imaging</title><addtitle>Cancer Imaging</addtitle><description>The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, F-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy  compared to classification based on conventional image features only.</description><subject>Accuracy</subject><subject>Attenuation</subject><subject>Cancer therapies</subject><subject>Chest</subject><subject>Classification</subject><subject>Classifiers</subject><subject>CT imaging</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Diagnosis</subject><subject>Differentiation</subject><subject>Dual-energy CT</subject><subject>Entropy</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18 - therapeutic use</subject><subject>Histochemistry</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Iodine</subject><subject>Iodine - metabolism</subject><subject>K-nearest neighbors algorithm</subject><subject>Kurtosis</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - classification</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung nodules</subject><subject>Lungs</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Nodules</subject><subject>PET imaging</subject><subject>Pixels</subject><subject>Positron Emission Tomography Computed Tomography - methods</subject><subject>Spectral detector CT</subject><subject>Staging</subject><subject>Texture</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1470-7330</issn><issn>1740-5025</issn><issn>1470-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEoqXwBzigSEiIS4pfceILUlXxqFSJSzlbjj3OevHai51U7Zk_jrNbyi5COTgaf_PZnpmqeo3ROcY9_5AZ4ow1iKAGIdqxhj6pTjHrUNNRip4e_J9UL3JeI0REL7rn1QmlTAhBxWn16wbupjlBrYLy99nlOtraReMC1Bu1zSVuah3DLYTJxcLUbqNGyLWNqf7RBFAJ8lQHcONqKCHtVc7OOq0WfJENENwYdp4NTCpPZUfXfg5jHaKZPeSX1TOrfIZXD-tZ9f3zp5vLr831ty9XlxfXjW4Fm5qB9MYq3mJOOqNMT0jLe8t4D0YxPlCNERlabBGBrnBsaDUZNNXCKt1hguhZdbX3mqjWcpvKS9K9jMrJXSCmUapULudB4uIdOLPCmI4RQkQ3iEET3nZKK7C2uD7uXdt52IDRpTxJ-SPp8U5wKznGW9n1lGPWFsH7B0GKP-dSQ7lxWYP3KkCcsySsx5z2DC3o23_QdZxT6cVCCUxF0ZG_1KjKA1ywsZyrF6m84C1iLe5bXqjz_1DlM7Bxpc9gXYkfJbw7SFiB8tMqRz8v7c3HINmDOsWcE9jHYmAkl3mV-3mVZV7lbl4lLUlvDsv4mPJnQOlvGJvm8A</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Lennartz, Simon</creator><creator>Mager, Alina</creator><creator>Große Hokamp, Nils</creator><creator>Schäfer, Sebastian</creator><creator>Zopfs, David</creator><creator>Maintz, David</creator><creator>Reinhardt, Hans Christian</creator><creator>Thomas, Roman K</creator><creator>Caldeira, Liliana</creator><creator>Persigehl, Thorsten</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210126</creationdate><title>Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules</title><author>Lennartz, Simon ; Mager, Alina ; Große Hokamp, Nils ; Schäfer, Sebastian ; Zopfs, David ; Maintz, David ; Reinhardt, Hans Christian ; Thomas, Roman K ; Caldeira, Liliana ; Persigehl, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Attenuation</topic><topic>Cancer therapies</topic><topic>Chest</topic><topic>Classification</topic><topic>Classifiers</topic><topic>CT imaging</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Diagnosis</topic><topic>Differentiation</topic><topic>Dual-energy CT</topic><topic>Entropy</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18 - therapeutic use</topic><topic>Histochemistry</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Iodine</topic><topic>Iodine - metabolism</topic><topic>K-nearest neighbors algorithm</topic><topic>Kurtosis</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - classification</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung nodules</topic><topic>Lungs</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Nodules</topic><topic>PET imaging</topic><topic>Pixels</topic><topic>Positron Emission Tomography Computed Tomography - methods</topic><topic>Spectral detector CT</topic><topic>Staging</topic><topic>Texture</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lennartz, Simon</creatorcontrib><creatorcontrib>Mager, Alina</creatorcontrib><creatorcontrib>Große Hokamp, Nils</creatorcontrib><creatorcontrib>Schäfer, Sebastian</creatorcontrib><creatorcontrib>Zopfs, David</creatorcontrib><creatorcontrib>Maintz, David</creatorcontrib><creatorcontrib>Reinhardt, Hans Christian</creatorcontrib><creatorcontrib>Thomas, Roman K</creatorcontrib><creatorcontrib>Caldeira, Liliana</creatorcontrib><creatorcontrib>Persigehl, Thorsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cancer imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lennartz, Simon</au><au>Mager, Alina</au><au>Große Hokamp, Nils</au><au>Schäfer, Sebastian</au><au>Zopfs, David</au><au>Maintz, David</au><au>Reinhardt, Hans Christian</au><au>Thomas, Roman K</au><au>Caldeira, Liliana</au><au>Persigehl, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules</atitle><jtitle>Cancer imaging</jtitle><addtitle>Cancer Imaging</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><artnum>17</artnum><issn>1470-7330</issn><issn>1740-5025</issn><eissn>1470-7330</eissn><abstract>The purpose of this study was to analyze if the use of texture analysis on spectral detector CT (SDCT)-derived iodine maps (IM) in addition to conventional images (CI) improves lung nodule differentiation, when being applied to a k-nearest neighbor (KNN) classifier. 183 cancer patients who underwent contrast-enhanced, venous phase SDCT of the chest were included: 85 patients with 146 benign lung nodules (BLN) confirmed by either prior/follow-up CT or histopathology and 98 patients with 425 lung metastases (LM) verified by histopathology, F-FDG-PET-CT or unequivocal change during treatment. Semi-automatic 3D segmentation of BLN/LM was performed, and volumetric HU attenuation and iodine concentration were acquired. For conventional images and iodine maps, average, standard deviation, entropy, kurtosis, mean of the positive pixels (MPP), skewness, uniformity and uniformity of the positive pixels (UPP) within the volumes of interests were calculated. All acquired parameters were transferred to a KNN classifier. Differentiation between BLN and LM was most accurate, when using all CI-derived features combined with the most significant IM-derived feature, entropy (Accuracy:0.87; F1/Dice:0.92). However, differentiation accuracy based on the 4 most powerful CI-derived features performed only slightly inferior (Accuracy:0.84; F1/Dice:0.89, p=0.125). Mono-parametric lung nodule differentiation based on either feature alone (i.e. attenuation or iodine concentration) was poor (AUC=0.65, 0.58, respectively). First-order texture feature analysis of contrast-enhanced staging SDCT scans of the chest yield accurate differentiation between benign and metastatic lung nodules. In our study cohort, the most powerful iodine map-derived feature slightly, yet insignificantly increased classification accuracy  compared to classification based on conventional image features only.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>33499939</pmid><doi>10.1186/s40644-020-00374-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-7330
ispartof Cancer imaging, 2021-01, Vol.21 (1), p.17-17, Article 17
issn 1470-7330
1740-5025
1470-7330
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1f46b64f9dd7422297b9bc2657acaeff
source Publicly Available Content (ProQuest); PubMed Central
subjects Accuracy
Attenuation
Cancer therapies
Chest
Classification
Classifiers
CT imaging
Datasets
Detectors
Diagnosis
Differentiation
Dual-energy CT
Entropy
Female
Fluorodeoxyglucose F18 - therapeutic use
Histochemistry
Humans
Image acquisition
Image classification
Image segmentation
Iodine
Iodine - metabolism
K-nearest neighbors algorithm
Kurtosis
Lung cancer
Lung Neoplasms - classification
Lung Neoplasms - diagnostic imaging
Lung nodules
Lungs
Male
Medical imaging
Metastasis
Middle Aged
Nodules
PET imaging
Pixels
Positron Emission Tomography Computed Tomography - methods
Spectral detector CT
Staging
Texture
Tomography, X-Ray Computed - methods
title Texture analysis of iodine maps and conventional images for k-nearest neighbor classification of benign and metastatic lung nodules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20analysis%20of%20iodine%20maps%20and%20conventional%20images%20for%20k-nearest%20neighbor%20classification%20of%20benign%20and%20metastatic%20lung%20nodules&rft.jtitle=Cancer%20imaging&rft.au=Lennartz,%20Simon&rft.date=2021-01-26&rft.volume=21&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.artnum=17&rft.issn=1470-7330&rft.eissn=1470-7330&rft_id=info:doi/10.1186/s40644-020-00374-3&rft_dat=%3Cgale_doaj_%3EA650451856%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-b28dfa651627dad822568f468eda46b3c102b51f02e7fa64b5c2bc3c9fac71203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2491394532&rft_id=info:pmid/33499939&rft_galeid=A650451856&rfr_iscdi=true