Loading…

Flexural Behavior of Reinforced Concrete Slabs Reinforced with Innovative Hybrid Reinforcement of Geogrids and Steel Bars

This paper aims to innovate a hybrid reinforcement system for concrete slabs, consisting of geogrids and steel bars, by conducting an experimental comparative study between using different types, tensile strengths, and layers of geogrids as additional reinforcement to steel bars in comparison to con...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) 2020-09, Vol.10 (9), p.161
Main Authors: Mohamed, Ramy, El Sebai, A.M., Gabr, Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to innovate a hybrid reinforcement system for concrete slabs, consisting of geogrids and steel bars, by conducting an experimental comparative study between using different types, tensile strengths, and layers of geogrids as additional reinforcement to steel bars in comparison to conventional steel-reinforced concrete control slab. These concrete slabs were tested under a four-point loading system until they failed due to bending. As an addition, strain gauges were attached to the concrete slabs bottom reinforcement (geogrids and steel bars) to provide a close examination of geogrids and steel bars as a hybrid reinforcement system. Results show that the innovated hybrid reinforcement system of uniaxial geogrids and steel bars more preferred as concrete slabs reinforcement as it provided more benefits values (including, but not limited to, initial-peak load, steel-yield load, post-peak load, displacement ductility index, and energy absorption capacity) and more efficient utilization (including, but not limited to, higher benefits to cost values and better flexural performance) than the case of using conventional reinforcement of steel bars and the cases of using triaxial geogrids as additional reinforcement to the steel bars; however, triaxial geogrids provide lower deflection values and higher first-crack load values.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings10090161