Loading…

A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag

A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation syst...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-10, Vol.15 (1), p.8582-8, Article 8582
Main Authors: Jiang, Yisha, Liu, Wenchao, Wang, Tao, Wu, Yitian, Mei, Tingting, Wang, Li, Xu, Guoheng, Wang, Yude, Liu, Nannan, Xiao, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c366t-fac85997a0cffa978e82d044919099988228e08433563f6360345aa5c8a8e8fd3
container_end_page 8
container_issue 1
container_start_page 8582
container_title Nature communications
container_volume 15
creator Jiang, Yisha
Liu, Wenchao
Wang, Tao
Wu, Yitian
Mei, Tingting
Wang, Li
Xu, Guoheng
Wang, Yude
Liu, Nannan
Xiao, Kai
description A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm −2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications. A nanofluidic chemoelectrical generator utilizing the Coulomb drag effect is developed to achieve enhanced current density, generating an amplified current of 1.2 mA cm −2 and voltage of approximately 0.8 V, scalable linearly to tens of Volts.
doi_str_mv 10.1038/s41467-024-52892-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f8f66e765d04c5789d219074770e562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f8f66e765d04c5789d219074770e562</doaj_id><sourcerecordid>3112858675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-fac85997a0cffa978e82d044919099988228e08433563f6360345aa5c8a8e8fd3</originalsourceid><addsrcrecordid>eNp9kTtvHCEUhVGUyLY2_gMuIqQ0aSbh_SitVR6WLKWxa8QyMMtqBhyYSbT_3njHcaIUoQFdvnsOlwPAFUYfMaLqU2WYCdkhwjpOlCYdewUuCGK4w5LQ13-dz8FlrQfUFtVYMXYGzqmmgiglLkB_DZNNOYxL7KODbu-n7Efv5hKdHeHgky92zgX-ivMe-rS3yfkePpWHI9zb8tPXOaYB7o4w5tStvTnBbV7GPO1gX-zwFrwJdqz-8nnfgPsvn--237rb719vtte3naNCzF2wTnGtpUUuBKul8or0iDGNNdJaK0WI8kgxSrmgQVCBKOPWcqdsQ0NPN-Bm1e2zPZiHEidbjibbaE6FXAZjyxzd6A0OKgjhpeDNwXGpdE-ajWRSIs8FaVofVq2Hkn8sbUgzxer8ONrk81INxZgoroTkDX3_D3rIS0lt0hMlJNPtwzeArJQrudbiw8sDMTJPkZo1UtMiNadIDWtN756ll93k-5eW3wE2gK5AbVdp8OWP939kHwGy06ot</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112674939</pqid></control><display><type>article</type><title>A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jiang, Yisha ; Liu, Wenchao ; Wang, Tao ; Wu, Yitian ; Mei, Tingting ; Wang, Li ; Xu, Guoheng ; Wang, Yude ; Liu, Nannan ; Xiao, Kai</creator><creatorcontrib>Jiang, Yisha ; Liu, Wenchao ; Wang, Tao ; Wu, Yitian ; Mei, Tingting ; Wang, Li ; Xu, Guoheng ; Wang, Yude ; Liu, Nannan ; Xiao, Kai</creatorcontrib><description>A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm −2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications. A nanofluidic chemoelectrical generator utilizing the Coulomb drag effect is developed to achieve enhanced current density, generating an amplified current of 1.2 mA cm −2 and voltage of approximately 0.8 V, scalable linearly to tens of Volts.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-52892-4</identifier><identifier>PMID: 39362886</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/947 ; 639/925/927/351 ; Carbon ; Carbon nanotubes ; Coupling ; Drag ; Electronic equipment ; Electrons ; Energy ; Energy harvesting ; Fluidics ; High voltage ; Humanities and Social Sciences ; Ions ; Movement ; multidisciplinary ; Nanofluids ; Nanotechnology ; Nanotubes ; Redox reactions ; Science ; Science (multidisciplinary) ; Voltage</subject><ispartof>Nature communications, 2024-10, Vol.15 (1), p.8582-8, Article 8582</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-fac85997a0cffa978e82d044919099988228e08433563f6360345aa5c8a8e8fd3</cites><orcidid>0000-0001-6548-4737 ; 0000-0001-5152-2667 ; 0000-0001-9829-2707 ; 0000-0002-1520-2452 ; 0000-0001-9235-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3112674939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3112674939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39362886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wu, Yitian</creatorcontrib><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Wang, Yude</creatorcontrib><creatorcontrib>Liu, Nannan</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><title>A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm −2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications. A nanofluidic chemoelectrical generator utilizing the Coulomb drag effect is developed to achieve enhanced current density, generating an amplified current of 1.2 mA cm −2 and voltage of approximately 0.8 V, scalable linearly to tens of Volts.</description><subject>639/638/440/947</subject><subject>639/925/927/351</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Coupling</subject><subject>Drag</subject><subject>Electronic equipment</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>High voltage</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Nanofluids</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Redox reactions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Voltage</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtvHCEUhVGUyLY2_gMuIqQ0aSbh_SitVR6WLKWxa8QyMMtqBhyYSbT_3njHcaIUoQFdvnsOlwPAFUYfMaLqU2WYCdkhwjpOlCYdewUuCGK4w5LQ13-dz8FlrQfUFtVYMXYGzqmmgiglLkB_DZNNOYxL7KODbu-n7Efv5hKdHeHgky92zgX-ivMe-rS3yfkePpWHI9zb8tPXOaYB7o4w5tStvTnBbV7GPO1gX-zwFrwJdqz-8nnfgPsvn--237rb719vtte3naNCzF2wTnGtpUUuBKul8or0iDGNNdJaK0WI8kgxSrmgQVCBKOPWcqdsQ0NPN-Bm1e2zPZiHEidbjibbaE6FXAZjyxzd6A0OKgjhpeDNwXGpdE-ajWRSIs8FaVofVq2Hkn8sbUgzxer8ONrk81INxZgoroTkDX3_D3rIS0lt0hMlJNPtwzeArJQrudbiw8sDMTJPkZo1UtMiNadIDWtN756ll93k-5eW3wE2gK5AbVdp8OWP939kHwGy06ot</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Jiang, Yisha</creator><creator>Liu, Wenchao</creator><creator>Wang, Tao</creator><creator>Wu, Yitian</creator><creator>Mei, Tingting</creator><creator>Wang, Li</creator><creator>Xu, Guoheng</creator><creator>Wang, Yude</creator><creator>Liu, Nannan</creator><creator>Xiao, Kai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6548-4737</orcidid><orcidid>https://orcid.org/0000-0001-5152-2667</orcidid><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid><orcidid>https://orcid.org/0000-0002-1520-2452</orcidid><orcidid>https://orcid.org/0000-0001-9235-2633</orcidid></search><sort><creationdate>20241003</creationdate><title>A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag</title><author>Jiang, Yisha ; Liu, Wenchao ; Wang, Tao ; Wu, Yitian ; Mei, Tingting ; Wang, Li ; Xu, Guoheng ; Wang, Yude ; Liu, Nannan ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-fac85997a0cffa978e82d044919099988228e08433563f6360345aa5c8a8e8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/638/440/947</topic><topic>639/925/927/351</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Coupling</topic><topic>Drag</topic><topic>Electronic equipment</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>High voltage</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Nanofluids</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Redox reactions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wu, Yitian</creatorcontrib><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Wang, Yude</creatorcontrib><creatorcontrib>Liu, Nannan</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yisha</au><au>Liu, Wenchao</au><au>Wang, Tao</au><au>Wu, Yitian</au><au>Mei, Tingting</au><au>Wang, Li</au><au>Xu, Guoheng</au><au>Wang, Yude</au><au>Liu, Nannan</au><au>Xiao, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-10-03</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>8582</spage><epage>8</epage><pages>8582-8</pages><artnum>8582</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm −2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications. A nanofluidic chemoelectrical generator utilizing the Coulomb drag effect is developed to achieve enhanced current density, generating an amplified current of 1.2 mA cm −2 and voltage of approximately 0.8 V, scalable linearly to tens of Volts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39362886</pmid><doi>10.1038/s41467-024-52892-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6548-4737</orcidid><orcidid>https://orcid.org/0000-0001-5152-2667</orcidid><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid><orcidid>https://orcid.org/0000-0002-1520-2452</orcidid><orcidid>https://orcid.org/0000-0001-9235-2633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-10, Vol.15 (1), p.8582-8, Article 8582
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1f8f66e765d04c5789d219074770e562
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/638/440/947
639/925/927/351
Carbon
Carbon nanotubes
Coupling
Drag
Electronic equipment
Electrons
Energy
Energy harvesting
Fluidics
High voltage
Humanities and Social Sciences
Ions
Movement
multidisciplinary
Nanofluids
Nanotechnology
Nanotubes
Redox reactions
Science
Science (multidisciplinary)
Voltage
title A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nanofluidic%20chemoelectrical%20generator%20with%20enhanced%20energy%20harvesting%20by%20ion-electron%20Coulomb%20drag&rft.jtitle=Nature%20communications&rft.au=Jiang,%20Yisha&rft.date=2024-10-03&rft.volume=15&rft.issue=1&rft.spage=8582&rft.epage=8&rft.pages=8582-8&rft.artnum=8582&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-52892-4&rft_dat=%3Cproquest_doaj_%3E3112858675%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-fac85997a0cffa978e82d044919099988228e08433563f6360345aa5c8a8e8fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112674939&rft_id=info:pmid/39362886&rfr_iscdi=true