Loading…
Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney
Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-...
Saved in:
Published in: | Scientific reports 2021-01, Vol.11 (1), p.73-73, Article 73 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993 |
---|---|
cites | cdi_FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993 |
container_end_page | 73 |
container_issue | 1 |
container_start_page | 73 |
container_title | Scientific reports |
container_volume | 11 |
creator | Matsui, Isao Matsumoto, Ayumi Inoue, Kazunori Katsuma, Yusuke Yasuda, Seiichi Shimada, Karin Sakaguchi, Yusuke Mizui, Masayuki Kaimori, Jun-ya Takabatake, Yoshitsugu Isaka, Yoshitaka |
description | Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman’s capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development. |
doi_str_mv | 10.1038/s41598-020-80154-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f92504ed6e74bb4924e347b60ba43ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f92504ed6e74bb4924e347b60ba43ee</doaj_id><sourcerecordid>2476252525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltiwCfhynMsGqaqgrVSBxGVt2c6ZwUNiD3YyUh6Bt8YzaYeWBbEUR-f_zh_76C-Kl4y-ZVQ07xIw2TYl5bRsKJNQzk-KU05Bllxw_vTB90lxntKG5kfyFlj7vDgRAjjlVXNa_P7q_LpHYrHvyZdPFyThrwm9zVUyeRt2GNNBnHodSYc77MN2QD_q_h7FRLTviM9sT7ZhzKLLqvMjxmOnDcMweWf16IJPWSQ4mDiHXCI_XedxflE8W-k-4fndflZ8__jh2-V1efv56uby4ra0FYixRGgq2fFWGyqgakxjhAZqEbDmlHbWyJphyxGktXW9AtC5L7-stJTXbSvOipvFtwt6o7bRDTrOKminDoUQ10rH0dkeFVu1XFLArsIajIGWAwqoTUWNBoGYvd4vXtvJDNjZfPWo-0emjxXvfqh12Km6bgEqlg3e3BnEkIeZRjW4tB-a9himpDjUlawYB5HR1_-gmzBFn0d1oLjcr0zxhbIxpBRxdTwMo2ofHLUER-XgqENw1JybXj28xrHlPiYZEAuQsuTXGP_--z-2fwB0a9KC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476252525</pqid></control><display><type>article</type><title>Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Matsui, Isao ; Matsumoto, Ayumi ; Inoue, Kazunori ; Katsuma, Yusuke ; Yasuda, Seiichi ; Shimada, Karin ; Sakaguchi, Yusuke ; Mizui, Masayuki ; Kaimori, Jun-ya ; Takabatake, Yoshitsugu ; Isaka, Yoshitaka</creator><creatorcontrib>Matsui, Isao ; Matsumoto, Ayumi ; Inoue, Kazunori ; Katsuma, Yusuke ; Yasuda, Seiichi ; Shimada, Karin ; Sakaguchi, Yusuke ; Mizui, Masayuki ; Kaimori, Jun-ya ; Takabatake, Yoshitsugu ; Isaka, Yoshitaka</creatorcontrib><description>Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman’s capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-80154-y</identifier><identifier>PMID: 33420268</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 692/4022 ; Animals ; Cell Communication ; Cell culture ; Cell differentiation ; Cell Lineage ; Cell self-renewal ; Clustering ; Data analysis ; Distal tubules ; Embryogenesis ; Endothelial cells ; Epithelial cells ; Gene Expression Regulation, Developmental - genetics ; Humanities and Social Sciences ; Kidney - cytology ; Kidney - embryology ; Kidneys ; Macrophages ; Markov chains ; Mice ; Mice, Inbred C57BL ; Mitochondria ; multidisciplinary ; Nephrons - cytology ; Nephrons - embryology ; Nerve growth factor ; Organ culture ; Pericytes ; Proximal tubules ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sequence Analysis, RNA - methods ; Single-Cell Analysis - methods ; Stem cells ; Stroma ; Ureter ; Velocity</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.73-73, Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993</citedby><cites>FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2476252525/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2476252525?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33420268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsui, Isao</creatorcontrib><creatorcontrib>Matsumoto, Ayumi</creatorcontrib><creatorcontrib>Inoue, Kazunori</creatorcontrib><creatorcontrib>Katsuma, Yusuke</creatorcontrib><creatorcontrib>Yasuda, Seiichi</creatorcontrib><creatorcontrib>Shimada, Karin</creatorcontrib><creatorcontrib>Sakaguchi, Yusuke</creatorcontrib><creatorcontrib>Mizui, Masayuki</creatorcontrib><creatorcontrib>Kaimori, Jun-ya</creatorcontrib><creatorcontrib>Takabatake, Yoshitsugu</creatorcontrib><creatorcontrib>Isaka, Yoshitaka</creatorcontrib><title>Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman’s capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.</description><subject>631/136</subject><subject>692/4022</subject><subject>Animals</subject><subject>Cell Communication</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell Lineage</subject><subject>Cell self-renewal</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Distal tubules</subject><subject>Embryogenesis</subject><subject>Endothelial cells</subject><subject>Epithelial cells</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Kidney - cytology</subject><subject>Kidney - embryology</subject><subject>Kidneys</subject><subject>Macrophages</subject><subject>Markov chains</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Nephrons - cytology</subject><subject>Nephrons - embryology</subject><subject>Nerve growth factor</subject><subject>Organ culture</subject><subject>Pericytes</subject><subject>Proximal tubules</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis - methods</subject><subject>Stem cells</subject><subject>Stroma</subject><subject>Ureter</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltiwCfhynMsGqaqgrVSBxGVt2c6ZwUNiD3YyUh6Bt8YzaYeWBbEUR-f_zh_76C-Kl4y-ZVQ07xIw2TYl5bRsKJNQzk-KU05Bllxw_vTB90lxntKG5kfyFlj7vDgRAjjlVXNa_P7q_LpHYrHvyZdPFyThrwm9zVUyeRt2GNNBnHodSYc77MN2QD_q_h7FRLTviM9sT7ZhzKLLqvMjxmOnDcMweWf16IJPWSQ4mDiHXCI_XedxflE8W-k-4fndflZ8__jh2-V1efv56uby4ra0FYixRGgq2fFWGyqgakxjhAZqEbDmlHbWyJphyxGktXW9AtC5L7-stJTXbSvOipvFtwt6o7bRDTrOKminDoUQ10rH0dkeFVu1XFLArsIajIGWAwqoTUWNBoGYvd4vXtvJDNjZfPWo-0emjxXvfqh12Km6bgEqlg3e3BnEkIeZRjW4tB-a9himpDjUlawYB5HR1_-gmzBFn0d1oLjcr0zxhbIxpBRxdTwMo2ofHLUER-XgqENw1JybXj28xrHlPiYZEAuQsuTXGP_--z-2fwB0a9KC</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Matsui, Isao</creator><creator>Matsumoto, Ayumi</creator><creator>Inoue, Kazunori</creator><creator>Katsuma, Yusuke</creator><creator>Yasuda, Seiichi</creator><creator>Shimada, Karin</creator><creator>Sakaguchi, Yusuke</creator><creator>Mizui, Masayuki</creator><creator>Kaimori, Jun-ya</creator><creator>Takabatake, Yoshitsugu</creator><creator>Isaka, Yoshitaka</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210108</creationdate><title>Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney</title><author>Matsui, Isao ; Matsumoto, Ayumi ; Inoue, Kazunori ; Katsuma, Yusuke ; Yasuda, Seiichi ; Shimada, Karin ; Sakaguchi, Yusuke ; Mizui, Masayuki ; Kaimori, Jun-ya ; Takabatake, Yoshitsugu ; Isaka, Yoshitaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/136</topic><topic>692/4022</topic><topic>Animals</topic><topic>Cell Communication</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell Lineage</topic><topic>Cell self-renewal</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Distal tubules</topic><topic>Embryogenesis</topic><topic>Endothelial cells</topic><topic>Epithelial cells</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Kidney - cytology</topic><topic>Kidney - embryology</topic><topic>Kidneys</topic><topic>Macrophages</topic><topic>Markov chains</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Nephrons - cytology</topic><topic>Nephrons - embryology</topic><topic>Nerve growth factor</topic><topic>Organ culture</topic><topic>Pericytes</topic><topic>Proximal tubules</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis - methods</topic><topic>Stem cells</topic><topic>Stroma</topic><topic>Ureter</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Isao</creatorcontrib><creatorcontrib>Matsumoto, Ayumi</creatorcontrib><creatorcontrib>Inoue, Kazunori</creatorcontrib><creatorcontrib>Katsuma, Yusuke</creatorcontrib><creatorcontrib>Yasuda, Seiichi</creatorcontrib><creatorcontrib>Shimada, Karin</creatorcontrib><creatorcontrib>Sakaguchi, Yusuke</creatorcontrib><creatorcontrib>Mizui, Masayuki</creatorcontrib><creatorcontrib>Kaimori, Jun-ya</creatorcontrib><creatorcontrib>Takabatake, Yoshitsugu</creatorcontrib><creatorcontrib>Isaka, Yoshitaka</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Isao</au><au>Matsumoto, Ayumi</au><au>Inoue, Kazunori</au><au>Katsuma, Yusuke</au><au>Yasuda, Seiichi</au><au>Shimada, Karin</au><au>Sakaguchi, Yusuke</au><au>Mizui, Masayuki</au><au>Kaimori, Jun-ya</au><au>Takabatake, Yoshitsugu</au><au>Isaka, Yoshitaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>73</spage><epage>73</epage><pages>73-73</pages><artnum>73</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman’s capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33420268</pmid><doi>10.1038/s41598-020-80154-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-01, Vol.11 (1), p.73-73, Article 73 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1f92504ed6e74bb4924e347b60ba43ee |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/136 692/4022 Animals Cell Communication Cell culture Cell differentiation Cell Lineage Cell self-renewal Clustering Data analysis Distal tubules Embryogenesis Endothelial cells Epithelial cells Gene Expression Regulation, Developmental - genetics Humanities and Social Sciences Kidney - cytology Kidney - embryology Kidneys Macrophages Markov chains Mice Mice, Inbred C57BL Mitochondria multidisciplinary Nephrons - cytology Nephrons - embryology Nerve growth factor Organ culture Pericytes Proximal tubules Ribonucleic acid RNA Science Science (multidisciplinary) Sequence Analysis, RNA - methods Single-Cell Analysis - methods Stem cells Stroma Ureter Velocity |
title | Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20cell%20RNA%20sequencing%20uncovers%20cellular%20developmental%20sequences%20and%20novel%20potential%20intercellular%20communications%20in%20embryonic%20kidney&rft.jtitle=Scientific%20reports&rft.au=Matsui,%20Isao&rft.date=2021-01-08&rft.volume=11&rft.issue=1&rft.spage=73&rft.epage=73&rft.pages=73-73&rft.artnum=73&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-80154-y&rft_dat=%3Cproquest_doaj_%3E2476252525%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c643t-e4865d29ab03468b8b3a40ce4e7200dcb571e92e45cc77f44ac644acc5c027993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476252525&rft_id=info:pmid/33420268&rfr_iscdi=true |