Loading…
Extended Conformable K-Hypergeometric Function and Its Application
The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mech...
Saved in:
Published in: | Advances in mathematical physics 2024-03, Vol.2024, p.1-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-47599c0722877b652a94709dd885ebaca6cee6ba337014de7e4a02824d2c05c43 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2024 |
creator | Abdul Qayyum, Maham Dhiaa, Aya Mohammed Mahboob, Abid Rasheed, Muhammad Waheed Alameri, Abdu |
description | The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the α,k-beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended α,k-hypergeometric functions. |
doi_str_mv | 10.1155/2024/5709319 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1f987718a90e409ea0d2e149cd9d24b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f987718a90e409ea0d2e149cd9d24b0</doaj_id><sourcerecordid>3126980687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-47599c0722877b652a94709dd885ebaca6cee6ba337014de7e4a02824d2c05c43</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEhX0xgdE4gihtmPH8bFULa2oxAXOlmNviqs0Dk4q6N_jkqpH9rKr0dPsaBC6I_iJEM4nFFM24QLLjMgLNCJ5IVJJMnl5vim-RuOu2-I4meS55CP0PP_pobFgk5lvKh92uqwheU2XhxbCBvwO-uBMstg3pne-SXRjk1XfJdO2rZ3RR-0WXVW67mB82jfoYzF_ny3T9dvLajZdp4ZR0adMcCkNFpQWQpQ5p1qymNbaouBQaqNzA5CXOssEJsyCAKYxLSiz1GBuWHaDVoOv9Xqr2uB2OhyU1079CT5slA69MzUoUsn4hBRaYmBYgsaWAmHSWGkpK3H0uh-82uC_9tD1auv3oYnxVUZoLgscK4vU40CZ4LsuQHX-SrA6lq6OpatT6RF_GPBP11j97f6nfwHWE36r</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126980687</pqid></control><display><type>article</type><title>Extended Conformable K-Hypergeometric Function and Its Application</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Abdul Qayyum, Maham ; Dhiaa, Aya Mohammed ; Mahboob, Abid ; Rasheed, Muhammad Waheed ; Alameri, Abdu</creator><contributor>de León, Manuel ; Manuel de León</contributor><creatorcontrib>Abdul Qayyum, Maham ; Dhiaa, Aya Mohammed ; Mahboob, Abid ; Rasheed, Muhammad Waheed ; Alameri, Abdu ; de León, Manuel ; Manuel de León</creatorcontrib><description>The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the α,k-beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended α,k-hypergeometric functions.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2024/5709319</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Applied mathematics ; Astronomy ; Calculus ; Derivatives ; Engineering ; Fluid dynamics ; Hypergeometric functions ; Integrals ; Mathematical analysis ; Mathematical functions ; Mellin transforms ; Nuclear physics ; Operators (mathematics) ; Physics ; Quantum mechanics</subject><ispartof>Advances in mathematical physics, 2024-03, Vol.2024, p.1-12</ispartof><rights>Copyright © 2024 Maham Abdul Qayyum et al.</rights><rights>Copyright © 2024 Maham Abdul Qayyum et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-47599c0722877b652a94709dd885ebaca6cee6ba337014de7e4a02824d2c05c43</cites><orcidid>0000-0002-8784-6206 ; 0000-0002-9920-4892 ; 0000-0002-3936-7673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126980687/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126980687?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>de León, Manuel</contributor><contributor>Manuel de León</contributor><creatorcontrib>Abdul Qayyum, Maham</creatorcontrib><creatorcontrib>Dhiaa, Aya Mohammed</creatorcontrib><creatorcontrib>Mahboob, Abid</creatorcontrib><creatorcontrib>Rasheed, Muhammad Waheed</creatorcontrib><creatorcontrib>Alameri, Abdu</creatorcontrib><title>Extended Conformable K-Hypergeometric Function and Its Application</title><title>Advances in mathematical physics</title><description>The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the α,k-beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended α,k-hypergeometric functions.</description><subject>Applied mathematics</subject><subject>Astronomy</subject><subject>Calculus</subject><subject>Derivatives</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Hypergeometric functions</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mellin transforms</subject><subject>Nuclear physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quantum mechanics</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMFOwzAQRC0EEhX0xgdE4gihtmPH8bFULa2oxAXOlmNviqs0Dk4q6N_jkqpH9rKr0dPsaBC6I_iJEM4nFFM24QLLjMgLNCJ5IVJJMnl5vim-RuOu2-I4meS55CP0PP_pobFgk5lvKh92uqwheU2XhxbCBvwO-uBMstg3pne-SXRjk1XfJdO2rZ3RR-0WXVW67mB82jfoYzF_ny3T9dvLajZdp4ZR0adMcCkNFpQWQpQ5p1qymNbaouBQaqNzA5CXOssEJsyCAKYxLSiz1GBuWHaDVoOv9Xqr2uB2OhyU1079CT5slA69MzUoUsn4hBRaYmBYgsaWAmHSWGkpK3H0uh-82uC_9tD1auv3oYnxVUZoLgscK4vU40CZ4LsuQHX-SrA6lq6OpatT6RF_GPBP11j97f6nfwHWE36r</recordid><startdate>20240313</startdate><enddate>20240313</enddate><creator>Abdul Qayyum, Maham</creator><creator>Dhiaa, Aya Mohammed</creator><creator>Mahboob, Abid</creator><creator>Rasheed, Muhammad Waheed</creator><creator>Alameri, Abdu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8784-6206</orcidid><orcidid>https://orcid.org/0000-0002-9920-4892</orcidid><orcidid>https://orcid.org/0000-0002-3936-7673</orcidid></search><sort><creationdate>20240313</creationdate><title>Extended Conformable K-Hypergeometric Function and Its Application</title><author>Abdul Qayyum, Maham ; Dhiaa, Aya Mohammed ; Mahboob, Abid ; Rasheed, Muhammad Waheed ; Alameri, Abdu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-47599c0722877b652a94709dd885ebaca6cee6ba337014de7e4a02824d2c05c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Astronomy</topic><topic>Calculus</topic><topic>Derivatives</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Hypergeometric functions</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mellin transforms</topic><topic>Nuclear physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdul Qayyum, Maham</creatorcontrib><creatorcontrib>Dhiaa, Aya Mohammed</creatorcontrib><creatorcontrib>Mahboob, Abid</creatorcontrib><creatorcontrib>Rasheed, Muhammad Waheed</creatorcontrib><creatorcontrib>Alameri, Abdu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdul Qayyum, Maham</au><au>Dhiaa, Aya Mohammed</au><au>Mahboob, Abid</au><au>Rasheed, Muhammad Waheed</au><au>Alameri, Abdu</au><au>de León, Manuel</au><au>Manuel de León</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Conformable K-Hypergeometric Function and Its Application</atitle><jtitle>Advances in mathematical physics</jtitle><date>2024-03-13</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>The extended conformable k-hypergeometric function finds various applications in physics due to its ability to describe complex mathematical relationships arising in different physical scenarios. Here are a few instances of its uses in physics, including nuclear physics, fluid dynamics, quantum mechanics, and astronomy. The main objectives of this paper are to introduce the extended conformable k-hypergeometric and confluent hypergeometric functions by utilizing the new definition of the α,k-beta function and studying its important properties, like integral representation, summation formula, derivative formula, transform formula, and generating function. Also, introduce the extension of the Riemann–Liouville fractional derivative and establish some results related to the newly defined fractional operator, such as the Mellin transform and relations to extended α,k-hypergeometric functions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2024/5709319</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8784-6206</orcidid><orcidid>https://orcid.org/0000-0002-9920-4892</orcidid><orcidid>https://orcid.org/0000-0002-3936-7673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2024-03, Vol.2024, p.1-12 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1f987718a90e409ea0d2e149cd9d24b0 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Applied mathematics Astronomy Calculus Derivatives Engineering Fluid dynamics Hypergeometric functions Integrals Mathematical analysis Mathematical functions Mellin transforms Nuclear physics Operators (mathematics) Physics Quantum mechanics |
title | Extended Conformable K-Hypergeometric Function and Its Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Conformable%20K-Hypergeometric%20Function%20and%20Its%20Application&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Abdul%20Qayyum,%20Maham&rft.date=2024-03-13&rft.volume=2024&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2024/5709319&rft_dat=%3Cproquest_doaj_%3E3126980687%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-47599c0722877b652a94709dd885ebaca6cee6ba337014de7e4a02824d2c05c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126980687&rft_id=info:pmid/&rfr_iscdi=true |